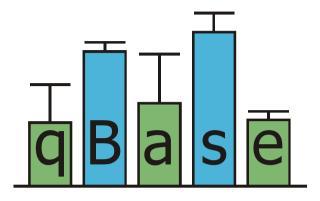

qBase management and automated analysis of qPCR data

Jan Hellemans Center for Medical Genetics Ghent University Hospital, Belgium

Introduction

Nucleic acid quantification: increasingly important in

- Biological research
- Clinical decision making
- Practical performance feasible for most labs because of
 - Improved detection chemistry & design guidelines
 - Advanced instruments
- Remaining problems
 - Accurate and straightforward data processing
 - Management of ever growing data sets
 - Need for flexible & user friendly software: SoFar, REST, Q-gene, DART, GENEX (BioRad), ...



Limitations current qPCR gene expression analysis tools

- Dedicated for one instrument, cumbersome data import
- Limited number of samples or genes (<1run / plate)
- Fixed number of replicates
- Only one reference gene
- Lack of data quality controls
 - Replicate variability
 - Standard curve
 - NTC control
 - Reference gene stability
- Inaccurate error propagation / quantification
- Limited visualisation / rescaling
- Lack of experiment archive
- Closed architecture

Our solution: qBase

- Excel workbooks + VBA scripts
- Free open source (Artistic license)
- Management & automated analysis

→ Analyzer module

→ Browser module

Organize data on three levels

- Run (plate)
- Experiment: group of runs that need to be processed as a whole
 - Wells with identical sample and gene name are considered replicates
 - Sample results are relative to those of all the other samples
 - 2 independent (e.g. biological) replicates = 2 different experiments results are relative within an experiment but not between the two
- Project: group of related experiments

qBase Browser

Microsoft Excel - qBase browser.xls				
i Import • Export • Edit Analyze Exit qE	Base About		ł	Menu
Comme	Experiment: VHL1			
	te: 27/04/2005 ed: 18/08/2005			Annotation
Project + x Example	Experiment + X	Run + x	} {	Add & remove
				Browser
				Center for Medical Genetics

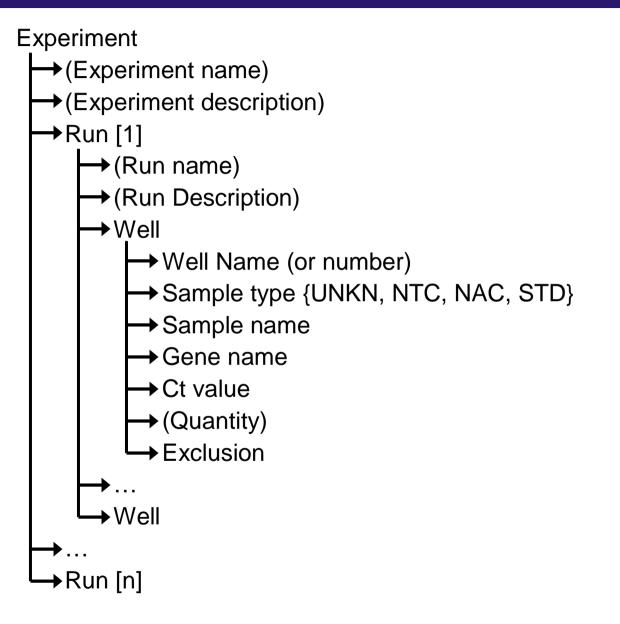
qBase Browser

- Manage data
- Annotate projects / experiments / runs
- Add & remove projects / experiments / runs
- Import & export projects / experiments (data exchange)
- Import run data
- Start analysis

Data import

qBase format (.xls)

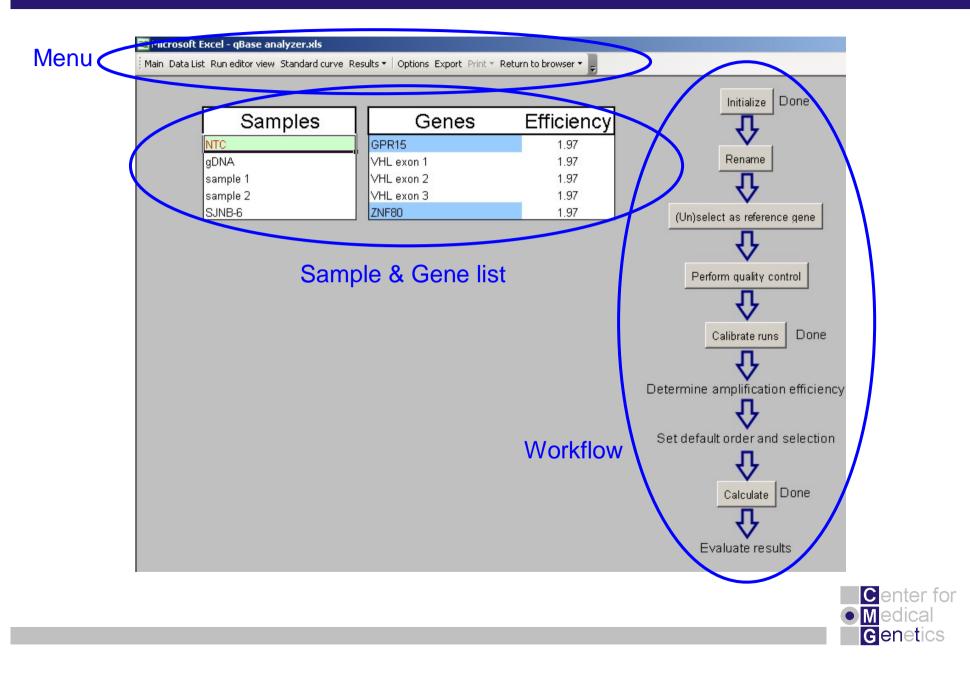
- Well
- (sample) type
- Sample (name)
- Gene (name)
- Ct / Cp
- Quantity
- Conversion of proprietary formats into qBase format
 - Many formats → Lots of work
 - Difficulties errors
 - Continued adaptation for newer formats
- Universal XML (work in progress)

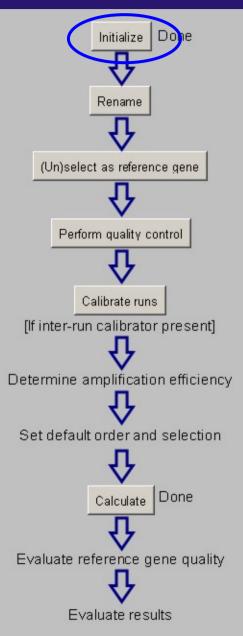

XML

- XML = Extensible Markup Language
- Open format (extensible with future additions)
- Identical for all qPCR users
- Facilitates data exchange between
 - Users
 - Software packages (e.g. data collection software vs. qBase)
- Can be read by everyone
- Allows submission of raw data along with publication
- Format is still open for discussion ...

qBase@medgen.ugent.be

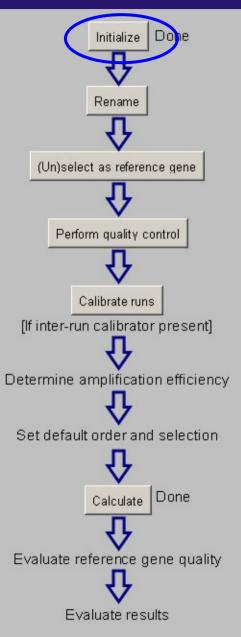
XML-format


qBase Analyzer


Project level (under construction)

- Statistical modules for analysis of normalized relative quantities
- Experiment level
 - Calculation of normalized relative quantities

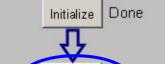
Experiment analyzer



Fetches data from source file

- Creates a
 - Data list

Run	Well	Туре	Name	Gene	Ct	Quant
1	G2	UNKN	SJNB-6	VHL exon 1	29.1	
1	H1	UNKN	SJNB-6	VHL exon 1	28.8	
1	H2	UNKN	SJNB-6	VHL exon 1	28.9	
1	A3	UNKN	gDNA	VHL exon 2	23.3	
1	A4	UNKN	gDNA	VHL exon 2	23.2	
1	B3	UNKN	gDNA	VHL exon 2	23.2	
1	B4	UNKN	gDNA	VHL exon 2	23.1	
1	B11	NTC	NTC	VHL exon 2		
1	B12	NTC	NTC	VHL exon 2		



- Fetches data from source file
- Creates a
 - Data list
 - Sample list
 - Gene list

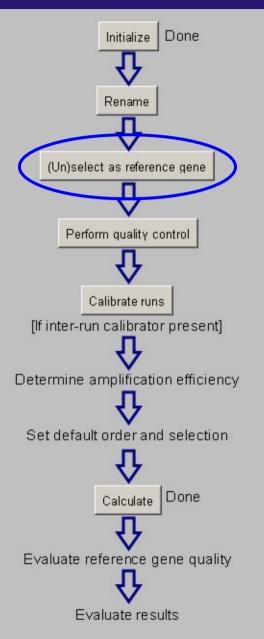
Samples	Genes
NTC	GPR15
gDNA	VHL exon 1
gDNA sample 1	VHL exon 2
sample 2	VHL exon 3
SJNB-6	ZNF80

Rename

(Un)select as reference gene

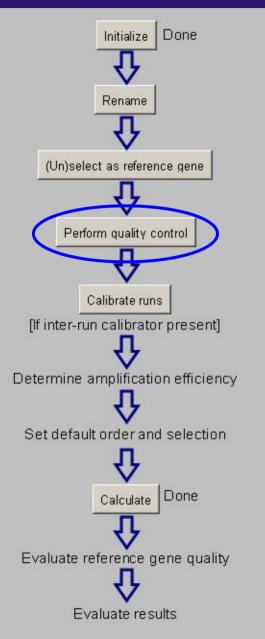
Microsoft Excel - gBase analyzer.xls

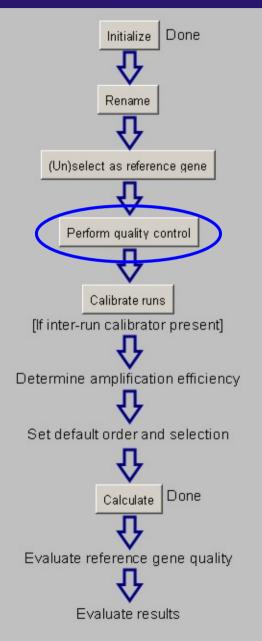
- Renames all the instances of a name (sample or gene)
- Renaming of specific wells
 Run editor


	1 run in VH	L1			Show:	Run 1	-	Chang	ge _	Print		
	1	2	3	4	5	6	7	8	9	10	11	12
A	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	NTC	NTC
If inter	VHL exon 1	VHL exon 1	VHL exon 2	VHL exon 2	VHL exon 3	VHL exon 3	ZNF80	ZNF80	GPR15	GPR15	VHL exon 1	VHL exon
	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	gDNA	NTC	NTC
U	VHL exon 1	VHL exon 1	VHL exon 2	VHL exon 2	VHL exon 3	VHL exon 3	ZNF80	ZNF80	GPR15	GPR15	VHL exon 2	VHL exon
C	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	NTC	NTC
termin	VHL exon 1	VHL exon 1	VHL exon 2	VHL exon 2	VHL exon 3	VHL exon 3	ZNF80	ZNF80	GPR15	GPR15	VHL exon 3	VHL exon
n	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	sample 1	NTC	NTC
U	VHL exon 1	VHL exon 1	VHL exon 2	VHL exon 2	VHL exon 3	VHL exon 3	ZNF80	ZNF80	GPR15	GPR15	ZNF80	ZNF80
	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	NTC	NTC
et def 上	VHL exon 1	VHL exon 1	VHL exon 2	VHL exon 2	VHL exon 3	VHL exon 3	ZNF80	ZNF80	GPR15	GPR15	GPR15	GPR15
E	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2	sample 2		
	VHL exon 1	VHL exon 1	VHL exon 2	VHL exon 2	VHL exon 3	VHL exon 3	ZNF80	ZNF80	GPR15	GPR15		
G	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6		
0	VHL exon 1	VHL exon 1	VHL exon 2	VHL exon 2	VHL exon 3	VHL exon 3	ZNF80	ZNF80	GPR15	GPR15		
н	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6	SJNB-6		
	VHL exon 1	VHL exon 1	VHL exon 2	VHL exon 2	VHL exon 3	VHL exon 3	ZNF80	ZNF80	GPR15	GPR15		
ualuati		UNKNOWN		NTC		N/	AC	SI	ANDARD		EMPTY	
valuate												

Center for Medical Genetics

Workflow Done Initialize Renames all the instances of a name (sample or gene) Rename Renaming of specific wells (Un)select as reference gene → Run editor Microsoft Excel - gBase analyzer.xls P Main Data List Run editor view Standard curve Results + Options Export Print + Return to browser + Show: Run 1 Print -1 run in VHL1 Change 9 12 10 11 _{at} Change ... X DNA **dDNA aDNA aDNA aDNA aDNA** NTC NTC VHL exon 1 VHL exon 2 VHL exon 2 Sample name Gene name Quantity PR15 GPR15 VHL exon 1 VHL exon 1 VHL VHL exon 1 [If inter g[DNA NTC NTC **aDNA aDNA aDNA aDNA aDNA** PR15 VHL exon 1 VHL exon 1 VHL exon 2 VHL exon 2 VHL Change sample name(s) into GPR15 VHL exon 2 VHL exon 2 sample 1 sample 1 sample 1 sample 1 san mple 1 sample 1 NTC NTC Determin VHL PR15 GPR15 VHL exon 3 VHL exon 3 VHL exon 1 VHL exon 1 VHL exon 2 VHL exon 2 mple 1 NTC san NTC sample 1 sample 1 sample 1 sample 1 sample 1 GPR15 VHL exon 1 VHL exon 1 VHL exon 2 VHL exon 2 VHL Alerts PR15 ZNF80 ZNF80 sample 2 sample 2 sample 2 sample 2 mple 2 sample 2 NTC NTC san Set def Multiple samples are selected VHL exon 1 VHL exon 1 VHL exon 2 VHL exon 2 VHL PR15 GPR15 GPR15 GPR15 sample 2 sample 2 sample 2 sample 2 san mple 2 sample 2 Not all cells with this sample name are selected VHL PR15 GPR15 VHL exon 1 VHL exon 1 VHL exon 2 VHL exon 2 SJ UNB-6 SJNB-6 SJNB-6 SJNB-6 SJNB-6 SJNB-6 Change name PR15 VHL exon 1 VHL exon 1 VHL exon 2 VHL exon 2 VHL GPR15 SJNB-6 SJNB-6 SJNB-6 SJNB-6 SJ UNB-6 SJNB-6 VHL exon 1 VHL exon 1 VHL exon 2 VHL exon 2 VHL exon o PR15 GPR15 ZIN U VIII CAOL 3 NAC UNKNOWN NTC STANDARD EMPTY Evaluate


Evaluate results


Select up to 5 reference genes

- NTC present?
- Minimal value for NTC
- Maximum difference between replicates
- Minimum difference between UNKN and NTC
- Gene spread over multiple runs
- Thresholds in 'Options'

Quality control

- One sample name is associated with NTC.
- A NTC was found for all genes.
- All NTCs had a Ct value of at least 38.
- The difference in Ct value between the samples and the NTC was greater than 3 for all samples.

Nee

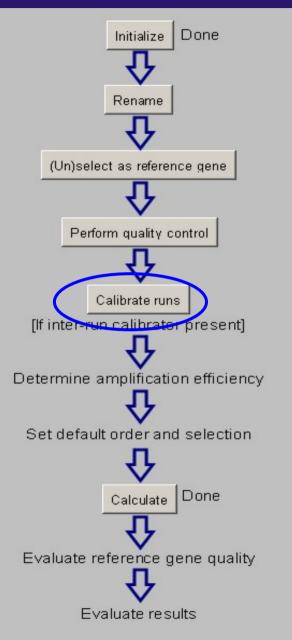
- ! The difference in Ct between the replicates was larger than 0.5 in one instance.
- No genes were spread over multiple runs.

All reported alerts will be highlighted in the data table. Show data list?

Summary of quality control

Ja

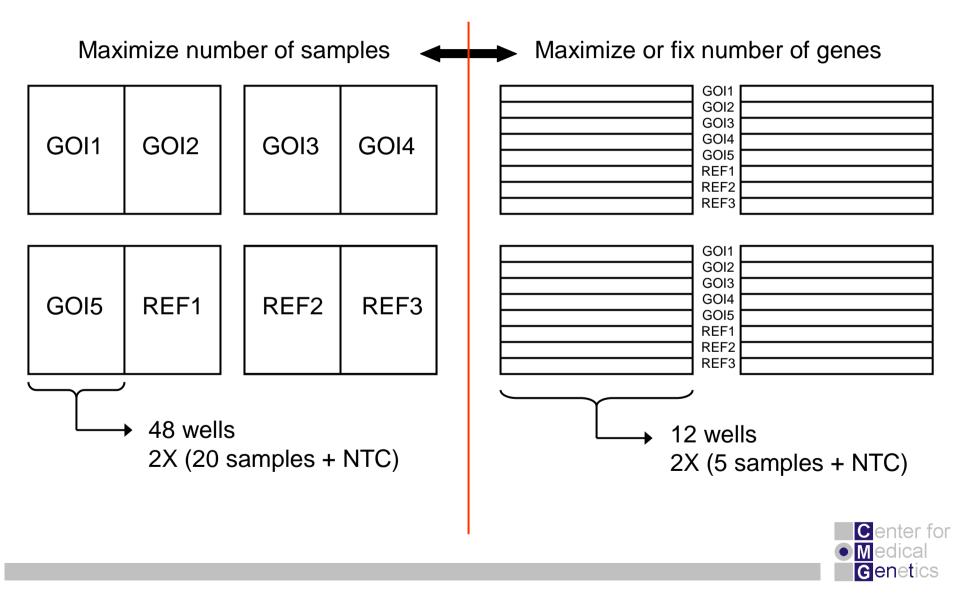
Review data in highlighted list



X

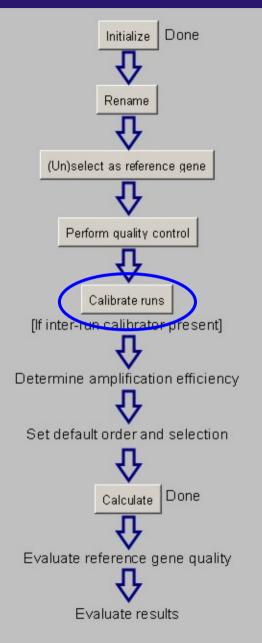
Data list

	10/ 11	-		0	0	0.1			E 1 1
kun	Well	Туре	Name	Gene	Ct	Quant	ACt (NTC) test	∆Ct (replicates) test	Exclude
1	G2	UNKN	SJNB-6	VHL exon 1	29.1				
1	H1	UNKN	SJNB-6	VHL exon 1	28.8				
		UNKN	SJNB-6	VHL exon 1	28.9				
1	A3	UNKN	gDNA	VHL exon 2	23.3				
1	A4	UNKN	gDNA	VHL exon 2	23.2				
1	B3	UNKN	gDNA	VHL exon 2	23.2				
1	B4	UNKN	gDNA	VHL exon 2	23.1				
1	B11	NTC	NTC	VHL exon 2					
1	B12	NTC	NTC	VHL exon 2				(Delete)	
1	C3	UNKN	sample 1	VHL exon 2	25			'Delete'	
1	C4	UNKN	sample 1	VHL exon 2	24.8				
1	D3	UNKN	sample 1	VHL exon 2	25.3				
1	D4	UNKN	sample 1	VHL exon 2	25.2				
1	E3	UNKN	sample 2	VHL exon 2	25.3			Replicate problem	
1	E4	UNKN	sample 2	VHL exon 2	25.2			Replicate problem	
1	F3	UNKN	sample 2	VHL exon 2	24			Replicate problem	Excluded
1	F4	UNKN	sample 2	VHL exon 2	24.2			Replicate problem	Excluded
1	G3	UNKN	SJNB-6	VHL exon 2	28.9				
1	G4	UNKN	SJNB-6	VHL exon 2	29.1				
1	HЗ	UNKN	SJNB-6	VHL exon 2	29.1				
1	H4	UNKN	SJNB-6	VHL exon 2	29.2				
1	A5	UNKN	gDNA	VHL exon 3	23.5				
1	A6	UNKN	gDNA	VHL exon 3	23.4				
1	B5	UNKN	gDNA	VHL exon 3	23.5				
1	B6	UNKN	gDNA	VHL exon 3	23.4				
1	C11	NTC	NTC	VHL exon 3					
1	C12	NTC	NTC	VHL exon 3					
	C5	UNKN	sample 1	VHL exon 3	24.5				



 Inter-run calibration for experiments with genes spread over multiple runs in the presence of inter-run calibrators

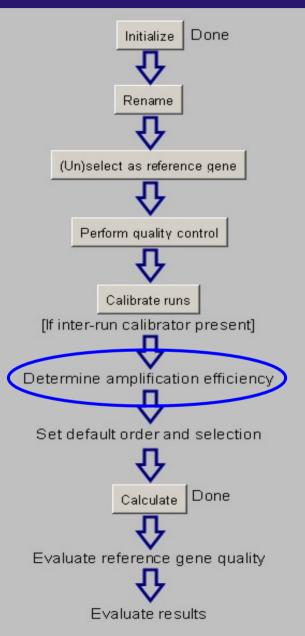
[5 GOI + 3REF] X [20 samples + 1 NTC] X [2 replicates] → 4 runs



Most common use: relative quantification, comparison of gene expression levels between samples

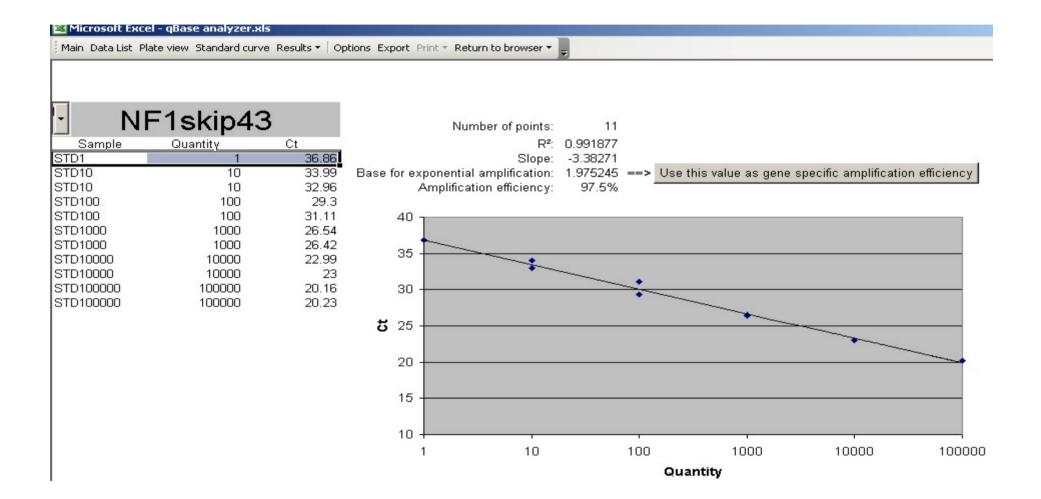
Minimize variation NOT caused by differential expression

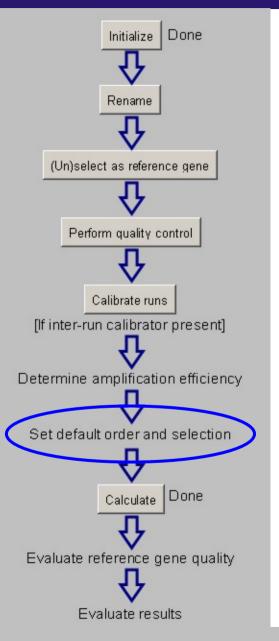
- Differences in cDNA starting concentration and quality
 - ➔ Normalization
- Differences in amplification conditions
 - → Good equipment with minimal intra-run variation
 - → Use 'Sample maximalisation'
 - → Inter-run calibration (if required)



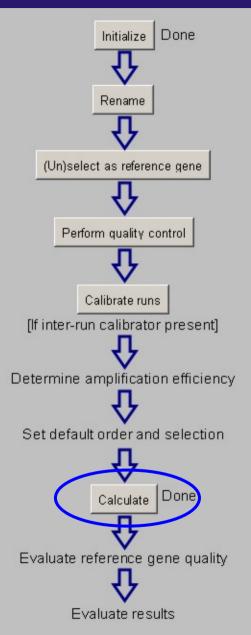
- Inter-run calibration for experiments with genes spread over multiple runs in the presence of inter-run calibrators
- Automated
 - Identification of inter-run calibrators
 - Calibration (gene specific)
 - Calculation of ΔCt between the runs for all inter-run calibrators
 - Calculate the average ΔCt
 - Adjust Ct values with this average ΔCt
- Quality control
 - Avoid calibration with bad calibrators
 - Allows user intervention

🛚 Microsoft Excel - qBase analyzer.xls				
Main Data List Plate view Standard curve Results	Options Export Print * R	eturn to browser 👻 👳		
A E	3 C [) E F	G	l J
1 Calibrating	run1 vs rur	2 for gene	ctgf	
2		1891/1992 - 1 1 - 5154		
3 Inter-run calibrator	Ct Run1	Ct Run2	dCt	Continue
4				
5 affected+TGFb	18.69	16.5		
6	18.59	30		
7	18.64	16.5	2.14	
8				
9 normal	20.04	18.036		
10	19.71	17.739	4 0075	
<u>11</u> 12	19.875	17.8875	1.9875	
13	average dCt	> 2.06375		
		> 0.1525		
14 15				



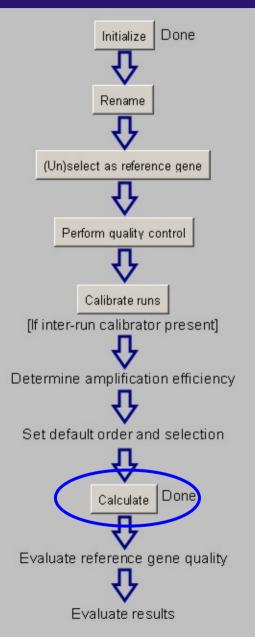

- Set default ampl. eff. for all genes
- Specify a gene specific ampl. eff.
- Determine ampl. eff. with standard curve

Standard curve



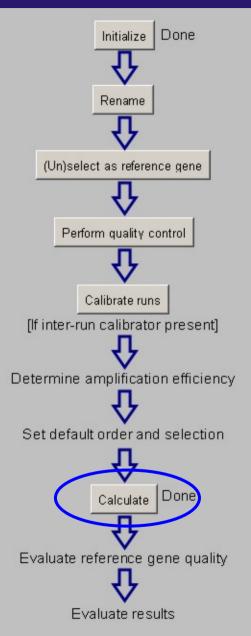
- Use keyboard button 'del' to exclude samples in the results
- Use keyboard buttons 'up' and 'down' to reorder samples

Samples	Genes
NTC	GPR15
gDNA	VHL exon 1
gDNA sample 1	VHL exon 2
sample 2	VHL exon 3
SJNB-6	ZNF80



Three generations of quantification models

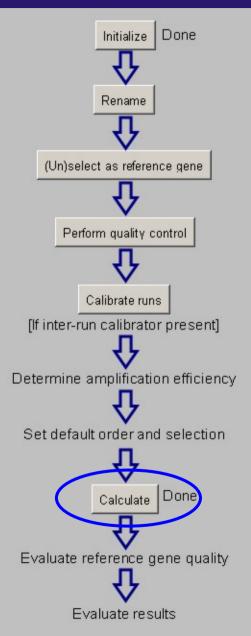
1. Livak and Schmittgen (2001) 100% PCR efficiency, 1 reference gene $NRQ = 2^{\Delta\Delta Ct}$



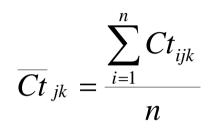
Three generations of quantification models

- Livak and Schmittgen (2001) 100% PCR efficiency, 1 reference gene
- 2. Pfaffl (2001) adjusted PCR efficiency, 1 ref. gene

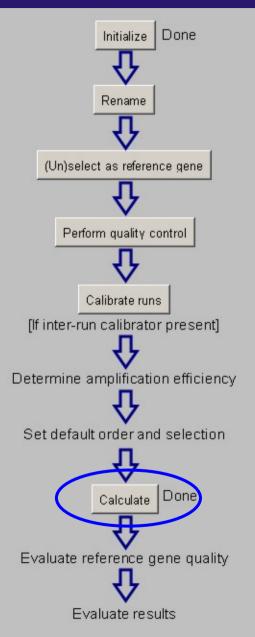
$$NRQ = \frac{E_{goi}^{\Delta Ct,goi}}{E_{ref}^{\Delta Ct,ref}}$$



Three generations of quantification models

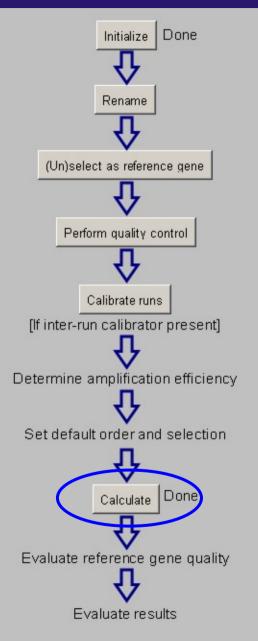

- Livak and Schmittgen (2001) 100% PCR efficiency, 1 reference gene
- 2. Pfaffl (2001) adjusted PCR efficiency, 1 ref. gene
- 3. Unpublished new model adjusted PCR eff. & multiple ref. genes

$$NRQ = \frac{E_{goi}^{\Delta Ct,goi}}{\sqrt[n]{\prod_{i}^{n} E_{ref_{i}}^{\Delta Ct,ref_{i}}}}$$



Average Ct values of replicates

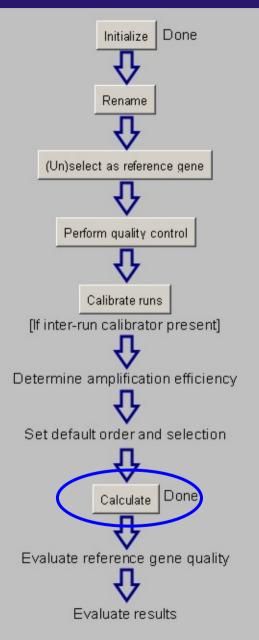
$$SD(\overline{Ct}_{jk}) = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(Ct_{ijk} - \overline{Ct}_{jk}\right)^2}$$



- Average Ct values of replicates
- Convert Ct values into relative quantities

$$RQ_{jk} = E_{j}^{(\overline{Ct}_{control,j} - \overline{Ct}_{jk})}$$

$$SD(RQ_{jk}) = RQ_{jk} . \ln(E_j) . SD(\overline{Ct}_{jk})$$

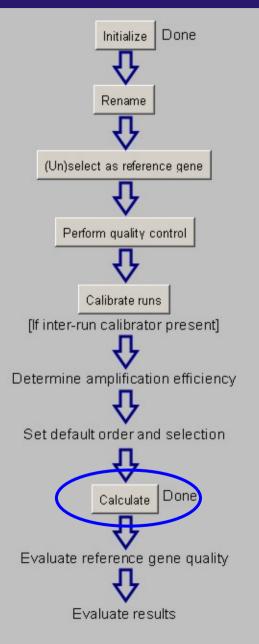


- Average Ct values of replicates
- Convert Ct values into relative quantities
- Calculate the normalization factor

$$NF_{k} = \sqrt[f]{\prod_{o=1}^{f} RQ_{ref,ok}}$$
$$SD(NF_{k}) = NF_{k}\sqrt{\sum_{o=1}^{f} \left(\frac{SD(RQ_{ref,ok})}{f.RQ_{ref,ok}}\right)^{2}}$$

- Average Ct values of replicates
- Convert Ct values into relative quantities

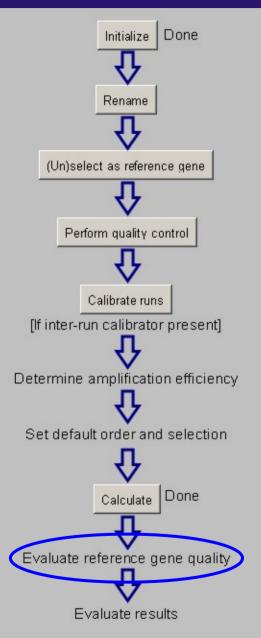
1

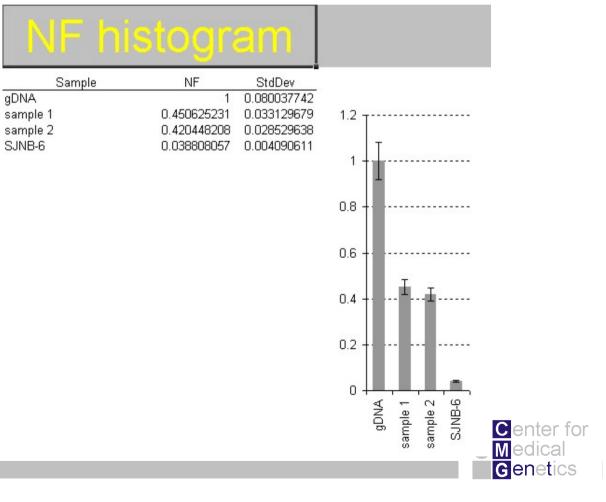

- Calculate the normalization factor
- Perform normalization

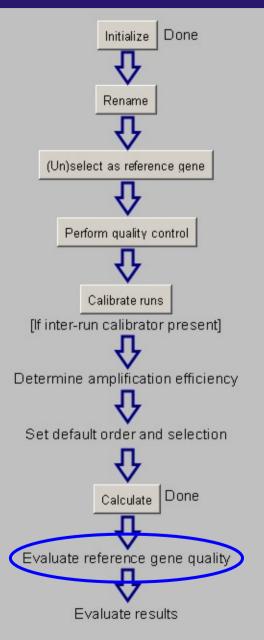
$$NRQ_{jk} = \frac{RQ_{jk}}{NF_k}$$

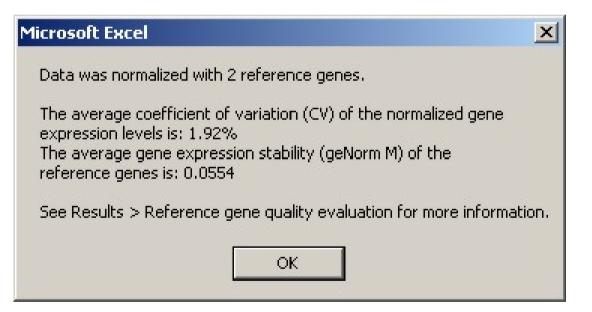
$$SD(NRQ_{jk}) = NRQ_{jk} \sqrt{\left(\frac{SD(N)}{NF}\right)}$$

$$\frac{D(NF_k)}{NF_k}\right)^2 + \left(\frac{SD(RQ_{jk})}{RQ_{jk}}\right)^2$$

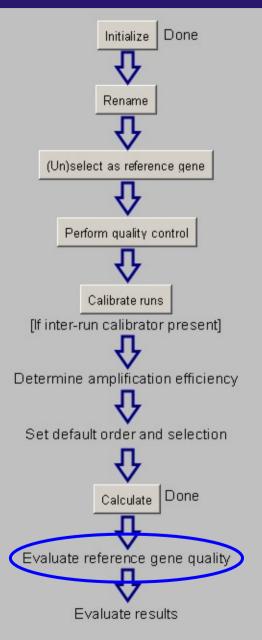



- Average Ct values of replicates
- Convert Ct values into relative quantities
- Calculate the normalization factor
- Perform normalization
- Rescale data (Options)

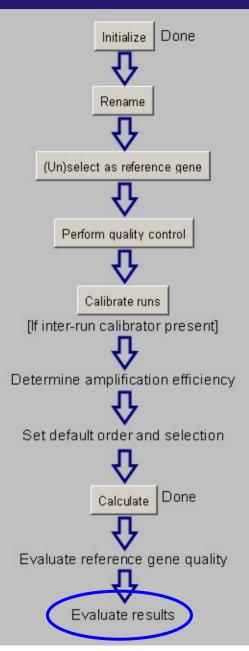

	Exclude	
	🔽 Standard	
	✓ Hidden samples	
	Highest expression is 100% Calibrator is 1	
	Calibrator is 100%	
C		



- Only applicable with >1 reference gene
- Normalization factor histogram (abnormalities?)



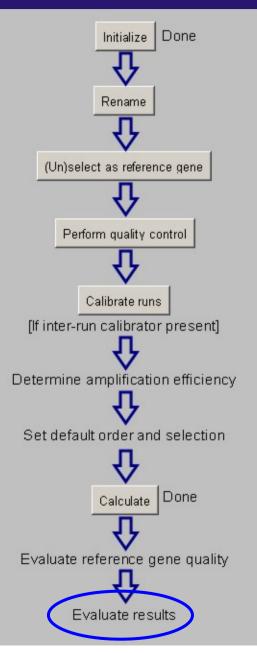
- Only applicable with >1 reference gene
- Normalization factor histogram (abnormalities?)
- CV & M



- Only applicable with >1 reference gene
- Normalization factor histogram (abnormalities?)
- CV & M

Reference gene quality evaluation

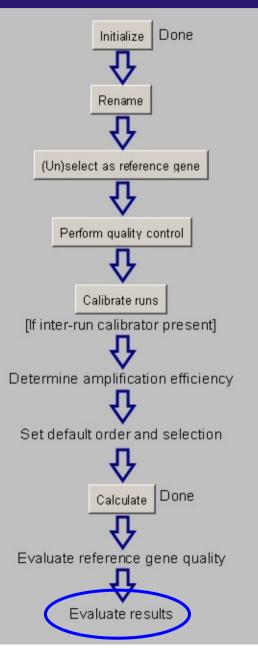
	l cv	M (geNorm)
GPR15	1.92%	0.0554
ZNF80	1.93%	0.0554
Total	1.92%	0.0554



Table

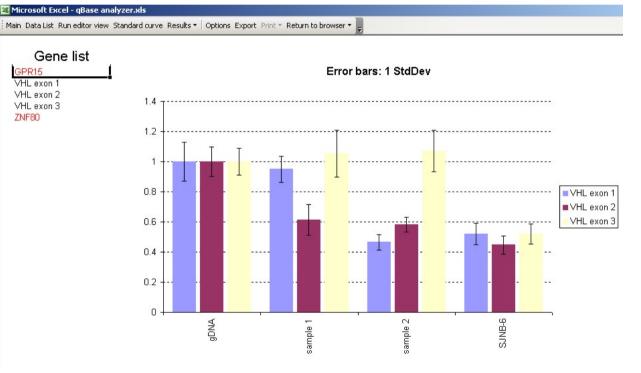
Microsoft Excel - qBase analyzer.xls

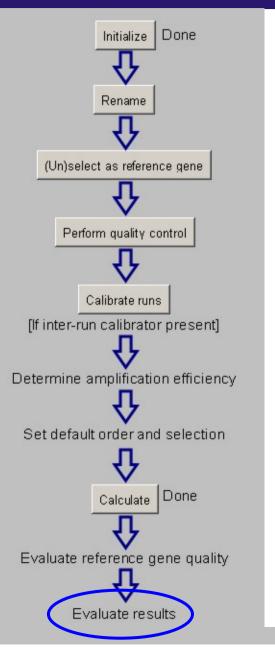
Main Data List Pl	ate view Stan	dard curve R	esults 🕶 🛛 Op	tions Export	Print * Retu	ırn to browser	-	
Sample/Gene	GPR15	1 SEM	VHL exon	1 SEM	VHL exon	1 SEM	VHL exon	1 SEM
gDNA NTC	1	0.074868	1	0.065605	1	0.049013	1	0.044742
	1.035265	0	1.898684	0	1.802501	0	2.143547	0
sample 1	1.01748	0.081754	0.949342	0.04404	0.604997	0.051538	1.053361	0.079215
sample 2	0.982821	0.061011	0.458502	0.025746	0.574349	0.027856	1.071773	0.070722
SJNB-6	1.026334	0.091698	0.513167	0.035104	0.439063	0.030035	0.513167	0.033959



Table

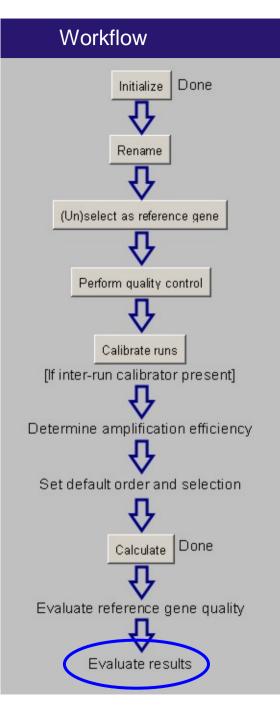
Single gene histogram


📽 Microsoft Excel - gBase analyzer.xls Main Data List Plate view Standard curve Results Options Export Print Return to browser -Selection, order As in Main Print results for this gene Print results for all genes ld1 Sample Expression 1 SEM 80 affected 0.186873119 affected+BMP4 39.8495975 6.522843517 70 affected+TGFb 41,41048897 1.244285369 6.813016175 0.213641054 control 60 69.95695647 2.059992897 control+BMP4 57.08092983 2.065156177 control+TGFb 50 1.379975759 0.177934515 normal normal+BMP4 37.74562675 7.814190892 40 58.91593797 3.598309402 normal+TGFb 30 20 10 affected affected+TGFb normal+TGFb affected+BMP4 control control+TGFb normal control+BMP4 normal+BMP4)r Medical Genetics


Table

ZNF80

- Single gene histogram
- Multi gene histogram



- Table
- Single gene histogram
- Multi gene histogram
- Options
- Export
 - Results (NRQ + SD or SEM)
 - geNorm input file

ions		×
Quality control settings	Run calibration quality control settings	
min ACt(NTC, sample): 3	Check max Ct for single calibrator	
max ΔCt(replicates): 0.5	35	
min Ct(NTC): 38	✓ Check max ∆∆Ct for multiple calibrators	
	1	
Amplification efficiency		
Default ampl efficiency 2	Error bars	
C Gene specific ampl efficiency	Size: X std dev O	
	SEM O	
Rescaling	- Y-axis scale	
Exclude	• Linear	
Standard	C Log 10	
✓ Hidden samples	Show additional info on prints	
	🗖 Name:	
• Lowest expression is 1	Comment:	
C Highest expression is 100%	Creation date:	
C Calibrator is 1	🗖 Last modified:	
C Calibrator is 100%		
Calibrator:		
Result table style		
C Show only quantities		
Show quantities & errors		
		ε
Set default values	OK Cancel	8

Summary

qBase Browser

- Import raw data in different formats (proposal for a universal XML format)
- Manage, organize and annotate data

qBase Analyzer, experiment level

- Quality control of raw data
- Inter-run calibration
- Correct conversion of Ct values into relative quantities using efficiencey correction
- Normalization with up to 5 reference genes
- Reference gene quality evaluation
- User friendly results viewing
- qBase Analyzer, project level (under construction)
 - Statistical processing of normalized relative quantities
- Easy data exchange
- Free open source

- Geert Mortier
- Frank Speleman
- Anne De Paepe
- Jo Vandesompele
- Colleagues at CMGG for testing and evaluation
- All users for suggestions and bug reports

<u>qBase@medgen.ugent.be</u> <u>http://medgen.ugent.be/qbase</u>

