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INTRODUCTION

Gene expression profiling studies 
using microarray technology to measure 
messenger RNA (mRNA) expression 
frequently yield long lists of genes that 
appear to be differentially expressed. 
Differential expression of a few genes 
is subsequently validated using an 
alternative technology, often real-time 
reverse transcription PCR (RT-PCR) 
assays. Compared to other methods 
to assess RNA expression, such as 
Northern blot analysis or conventional 
RT-PCR, real-time RT-PCR assays are 
rapid, reproducible, and have a wide 
dynamic range. All these technologies, 
however, are relatively labor-intensive. 
So, they are rarely used to validate the 
differential expression of more than 
10 or 20 genes. Applied Biosystems 
(Foster City, CA, USA) has recently 

introduced TaqMan® Low-Density 
Arrays, a medium-throughput method 
for real-time RT-PCR that uses micro-
fluidics cards. With the TaqMan Low-
Density Arrays, researchers can simul-
taneously assay the RNA expression 
levels of up to 384 genes on a single 
card. In principle, this technology 
makes it possible to validate rapidly 
the differential expression of all genes 
detected in a microarray study.

In conventional real-time RT-PCR 
assays, expression of the target gene 
of interest is normalized to an endog-
enous control, or housekeeping gene 
(1). The purpose of normalization is to 
remove or eliminate differences due to 
sampling; that is, differences in total 
RNA quantity and quality. The most 
commonly used housekeeping genes 
in real-time RT-PCR assays are β-actin 
(ACTB), glyceraldehyde-3-phosphate 

dehydrogenase (GAPD), and 18S and 
28S ribosomal RNA (rRNA) (2). Other 
commonly used housekeeping genes 
include the transferrin receptor (TFRC 
or CD71), β-glucuronidase (GUSB), 
β-2 microglobulin (B2M), phosphoglyc-
erate kinase (PGK1), and hypoxanthine 
phosphoribosyltransferase (HPRT) 
(3,4). The underlying assumption when 
using housekeeping genes to normalize 
data is that they are expressed at constant 
levels across the samples and that their 
expression does not vary in response to 
the experimental manipulation. Because 
the expression of the target gene is 
measured relative to the housekeeping 
gene, it is critical that these assumptions 
hold. It has become clear, however, that 
no single housekeeping gene can be used 
for all studies and that the choice of the 
control gene depends on the tissue type 
and the experimental conditions (5–11).
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Although many studies have 
demonstrated that the expression of 
housekeeping genes may vary consid-
erably, relatively few studies have been 
performed to address this issue directly. 
Tricarico and colleagues (3) used 
real-time RT-PCR to study the levels 
of vascular endothelial growth factor 
(VEGF) mRNA in breast cancer and 
colon cancer. They compared normal-
ization to 11 different housekeeping 
genes with normalization to total RNA. 
No single housekeeping gene produced 
values that matched the VEGF protein 
levels (as measured by immunohisto-
chemistry) or the results of functional 
assays (microvessel density) as 
accurately as normalization to total 
RNA. However, accurate quantification 
of the total amount of RNA may be 
difficult in some circumstances, such 
as with very small tissue biopsies. 
Moreover, the total amount of RNA 
may itself vary, reflecting important 
differences in the biological activity of 
cells under different conditions. Vande-
sompele and colleagues (12) showed 
that normalization based on a single 
housekeeping gene led to erroneous 
quantifications of up to 3-fold in 25% of 
cases and 6.4-fold in 10% of cases, with 
sporadic cases showing errors greater 
than 20-fold. They recommended 
normalizing to the geometric mean of 
several housekeeping genes. Arguing 
that it was impractical to quantify eight 
control genes in order to study a few 
target genes, they also proposed an 
iterative method for finding a minimal 
set of housekeeping genes to include 
in the normalization set. Tricarico and 
colleagues (3) viewed the necessity of 
identifying an appropriate combination 
of housekeeping genes as a nontrivial 
practical limitation of this method.

Using TaqMan Low-Density Arrays, 
we can now rapidly assay the expression 
of up to 384 genes on a single micro-
fluidics card, which largely eliminates 
these practical limitations. In their 
place, we are faced with the statistical 
challenge of finding a good combination 
of genes to use for normalization. In 
this paper, we describe the results of an 
experiment using TaqMan Low-Density 
Arrays on nine samples from patients 
with chronic lymphocytic leukemia 
(CLL). We introduce a novel statistical 
method, based on the established theory 

of linear mixed models, for analyzing 
the data. This method automati-
cally identifies a subset of genes that 
do not change significantly over the 
samples, allowing them to be used to 
normalize the expression levels of the 
remaining genes. Finally, we compare 
the normalized real-time RT-PCR 
values with the results obtained from 
GeneChip® oligonucleotide microarray 
(Affymetrix, Santa Clara, CA, USA) 
experiments on the same samples.

MATERIALS AND METHODS

Sample Collection and RNA 
Preparation

CLL samples were collected from 
the peripheral blood of nine untreated 
patients at the University of Texas M.D. 
Anderson Cancer Center (Houston, 
TX, USA) after obtaining informed 
consent. Total RNA was prepared from 
CD19-positive CLL cells and was used 
to determine the somatic hypermutation 
status of the immunoglobulin heavy 
chain variable region genes, as previ-
ously described (13). The RNA was 
also used for hybridization to oligo-
nucleotide arrays (U133A GeneChip) 
and for real-time RT-PCR on TaqMan 
Low-Density Array microfluidics cards 
(Applied Biosystems).

Oligonucleotide Microarray 
Analysis

Each U133A GeneChip microarray 
contains 22,215 noncontrol probe sets 
that correspond to more than 18,400 
distinct transcripts, including 14,593 
well-characterized human genes. The 
list of probe sets and corresponding 
genes is available from the Affymetrix 
web site (www.affymetrix.com/
support/technical/libraryfilesmain.affx). 
Hybridization of biotin-labeled cRNA 
to the oligonucleotide arrays and image 
analysis were performed in the DNA 
Microarray Core Facility at the M.D. 
Anderson Cancer Center, according 
to protocols available on their web site 
(www.mdanderson.org/departments/
dnamicroarray). The microarray image 
data were quantified and normalized 
using the DNA Chip Analyzer (www.
dchip.org) as previously described (14).

TaqMan Low-Density Array

The TaqMan Immune Profiling 
Low-Density Array consists of 96 
TaqMan Gene Expression Assays 
(Applied Biosystems) preconfigured 
in a 384-well format and spotted on 
a microfluidic card (4 replicates per 
assay). Each TaqMan Gene Expression 
Assay consists of a forward and reverse 
primer at a final concentration of 900 
nM and a TaqMan MGB probe (6-FAM 
dye-labeled; Applied Biosystems), 250 
nM final concentration. The assays are 
gene specific and have been designed 
to span an exon-exon junction. Each 
assay and its assay ID number are 
available at docs.appliedbiosystems.
com/pebiodocs/00112893.pdf.

First, 500 µL of cDNA from each 
sample (20 ng total input RNA/µL) 
were combined with an equal volume 
of TaqMan Universal PCR Master 
Mix (Applied Biosystems), mixed 
by inversion, and spun briefly in an 
Eppendorf 5415D microcentrifuge 
(Brinkmann Instruments, Westbury, NY, 
USA). After the cards reached room 
temperature, 100 µL of each sample 
were loaded into each of 8 ports on 
the TaqMan Low-Density Array. The 
cards were placed in Sorvall®/Heraeus® 
Custom Buckets (Applied Biosystems) 
and centrifuged in a Sorvall Legend™ 
centrifuge (Kendro Scientific, Asheville, 
NC, USA) for 1 min at 331× g. Cards 
with excess sample in the fill reservoir 
were spun for an additional 1 min. 
Immediately following centrifugation, 
the cards were sealed with a TaqMan 
Low-Density Array Sealer (Applied 
Biosystems) to prevent cross-contami-
nation. The final volume in each well 
after centrifugation was less than 1.5 µL; 
thus, the final concentration was approx-
imately 15 ng per reaction. The real-
time RT-PCR amplifications were run 
on an ABI Prism® 7900HT Sequence 
Detection System (Applied Biosystems) 
with a TaqMan Low Density Array 
Upgrade. Thermal cycling condi-
tions were as follows: 2 min at 50°C 
[to activate uracil-DNA glycosylase 
(UNG)], 10 min at 95°C (activation), 40 
cycles of denaturation at 95°C for 15 s, 
and annealing and extension at 60°C for 
1 min. Each CLL sample was processed 
on a separate card.
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Statistical Analysis of Real-Time 
RT-PCR Data

Real-time RT-PCR data were 
quantified using the SDS 2.1 software 
package (Applied Biosystems). 
Results from each card were quantified 
separately, using an automatic baseline 
and a manual threshold of 0.10 to record 
the cycle thresholds (Cts). Assays that 
did not yield a cycle threshold for less 
than 40 cycles were treated as missing 
data. For our analysis, we used the base-
two logarithm of the relative abundance 
of RNA in each sample, which we 
computed as y = a - Ct where we chose 
the constant a to make the minimum 
of y equal 0 over the entire data set. 
Both the real-time RT-PCR data and 
the Affymetrix data were imported into 
S-Plus® (Insightful, Seattle, WA, USA) 
for statistical analysis. Linear mixed-
effects models were fit using the lme 
package. Spearman rank correlation 
coefficients were computed to compare 
data from the two platforms, and beta 
distributions were used to assess the 
null hypothesis of no significant corre-
lation between platforms.

RESULTS 

Real-Time RT-PCR Data

We randomly selected nine 
CLL samples (four with unmutated 
immunoglobulin heavy chain variable 
region genes and five with mutated 
variable region genes) that we had 
previously analyzed using U133A 
GeneChip arrays and analyzed them 
using the TaqMan Immune Profiling 
Low-Density Array. Real-time RT-PCR 
data were acquired and quantified as 
described in Materials and Methods. 
Figure 1 illustrates the dynamic range 
and variability of these measurements 
within and between samples on six 
genes; comparable results were obtained 
for the other genes (data not shown). 
The coefficient of variation (cv) in the 
observed Ct of the replicate wells was 
less than 3.5% for all but 13 of the 62 
× 9 = 558 gene-sample combinations. 
The cutoff of 3.5% was chosen because 
that was the largest cv observed for a 
replicate involving 18S rRNA, which 
had the smallest mean Ct (near 8). All 

13 outliers had mean Ct greater than 
30.9 cycles. Only one gene-sample 
combination (ACE in CLL37) had cv 
> 8%. So, we concluded that replicate 
wells gave reproducible values across 
seven orders of magnitude (225 ≈ 3.4 
× 107), which is consistent with previ-
ously published, conventional real-time 
RT-PCR data (15). Further, the four 
replicate wells were nearly indistin-
guishable in most cases. As expected, 
the expression levels of some genes 
(including 18S rRNA, GAPD, CD71, 
and Stat3) appeared relatively constant 
between samples; the expression levels 
of other genes (including CD38 and 
CD152) appeared highly variable.

Data Filtering

We performed a bioinformatic 
analysis to determine which genes 
were measured by both the TaqMan 
Low-Density Array and the Affymetrix 
U133A GeneChip oligonucleotide 
microarray. First, all analyses were 
restricted to genes that were expressed 
at detectable levels (in at least one of 
four replicate wells) for all nine CLL 
samples on the TaqMan Immune 
Profiling Low-Density Array. This 
filtering step reduced the number of 
genes to 62 and the total number of 
wells providing measurements to 2142. 
All 62 genes were used in analyses 
of the real-time RT-PCR data. Of the 
96 genes on the Low-Density Array, 
88 were represented by at least one 
probe set on the U133A GeneChip 
array. Three of the eight genes not 
represented on the U133A array had 
been removed because they provided 
no useful measurements on the Low-
Density Array. After removing the other 
five genes, we were left with 57 genes 
on the Low-Density Array represented 
by at least one probe set. Because of 
redundancy on the U133A GeneChip, 
we could compare the real-time RT-
PCR data for these 57 genes with 87 
probe sets.

Modeling Real-Time RT-PCR Data

Two recent papers have introduced 
similar statistical models for the 
normalization of real-time RT-PCR 
data (16,17). Both models (Equation 
A in Reference 16 and Model 1a in 

Reference 17) used fixed effects for 
genes and samples and an error model, 
accounting for gene-specific variability. 
We evaluated seven different models for 
their ability to describe our data (Table 
1). Models 1A and 1B are identical 
to those introduced in Reference 17; 
for the ease of comparison, we have 
retained the same alphanumeric labels. 
Model 1A uses a gene-specific error 
model, while model 1B assumes that 
the variability is the same for all genes. 
Models 2A and 2B have parallel error 
structures; model 2 differs from model 
1 by adding a fixed effect γij, which 
represents different expression levels 
for gene j in sample i. Models 3–5 
use only a fixed effect for the average 
expression of each gene; they incor-
porate random effects to account for 
sample differences (18). Model 3 uses 
a simple error structure that attributes 
a random effect, Bi ~ N(0, σB

2), with 
a common variance to sample i. Model 
4 extends this error structure by attrib-
uting an additional random effect, Cij ∼ 
N(0, σC

2), to gene j in sample i, again 
assuming a common variance. Model 
5, similar to models 1A and 2A, allows 
for gene-specific variability in the error 
model. All random effects and errors 
are assumed to be independent and 
normally distributed with mean zero.

All seven models were evaluated 
both on the subset of 6 genes displayed 
in Figure 1 and on the full data set of 62 
genes. Models were fit in S-Plus using 
the functions lm (1B and 2B), gls (1A 
and 2A), and lme (models 3–5). The 
validity of the model assumptions was 
assessed graphically (Supplementary 
Figures S1–S14; all Supplementary 
Materials are available at bioinfor-
matics.mdanderson.org/Supplements/
Microfluidics/index.html). From these 
graphs, we concluded that the assump-
tions were violated for models 1A, 1B, 
and 3: the residuals were not centered 
at zero, they were heteroscedastic, 
and they exhibited marked departures 
from normality. The assumptions were 
reasonable for the remaining models, 
with the only departure from normality 
being heavier tails in the distributions.

Random-effects models were fit 
using maximum likelihood (ML) rather 
than restricted maximum likelihood 
(REML) for better comparison with 
models using different fixed effects. 
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To compare models, we computed both 
the Akaike Information Criterion (AIC) 
and the Bayes Information Criterion 
(BIC); the results are shown in Table 
1. Both criteria reward models based 
on maximum likelihood and penalize 
models that use more parameters; 
models with smaller values for AIC or 
BIC are preferred (18). Based on either 
AIC or BIC, model 2A provides the 
best fit to the data. Among the random-
effects models, model 5 provides the 
best fit.

Identifying Endogenous Control 
Genes

Next, we wanted to identify genes 
that were expressed at essentially 
constant levels in our samples to use as 
endogenous controls. A fundamental 
characteristic of the random-effects 
model 5 is that it allows the data to 
inform us which genes are constant 
across the set of experimental samples. 
In particular, σj is an explicit estimate 
of the between-sample standard error 
of each gene (Figure 2). Because the 
method also provides an estimate of 
the within-replicate standard error 
(σ), the structure of the data is similar 

to a classical analysis of variance 
(ANOVA). Under the null hypothesis 
that the expression of a gene does 

not change across the samples, the 
estimated ratio σj

2/σ2 should have an 
F-distribution with N - 1 and M - N 

Table 1. Statistical Models Used to Analyze Real-Time RT-PCR Data

ID Model Random Effects    Number of 
   Parametersa 

     AIC      BIC

Six                  All Six         All Six          All

1A Yijk = µ + αj + βi + Eijk Eijk ∼ N(0, σj
2) 2G + S - 1

20                   132 379       5240 447         5989

1B Yijk = µ + αj + βi + Eijk Eijk ∼ N(0, σ2) G + S

15                     69 798       7468 848         7860

2A Yijk = µ + αj + βi + γij + Eijk Eijk ∼ N(0, σj
2) GS + G

60                   620 -275       -197 -72          3318

2B Yijk = µ + αj + βi + γij + Eijk Eijk ∼ N(0, σ2) GS + 1

55 559 -188 2527   -3 5696

3 Yijk = µ + αj + Bi + Eijk Bi ∼ N(0, σB
2), Eijk ~ N(0, σ2) G + 2

8   64 806 7488 833 7851

4 Yijk = µ + αj + Bi + Cij + Eijk Bi ∼ N(0, σB
2), Cij ~ N(0, σC

2), Eijk ~ N(0, σ2) G + 3

9   65 110 4295   40 4663

5 Yijk = µ + αj + Cij + Eijk Cij ∼ N(0, σj
2), Eijk ~ N(0, σ2) 2G + 1

13 125   35 3865   78 4574

RT-PCR, reverse transcription PCR; ID, unique identifier for the model in this paper; AIC = Akaike Information Criterion; BIC= Bayes Information Criterion. 
aNumber of parameters in the model.

Figure 1. Dot plot of the base-two logarithm of the relative abundance of RNA present for six genes 
in nine CLL samples. The log relative abundance is computed by adding a constant to the negative 
cycle threshold (Ct) values to set the minimum value equal to 0. The four replicates for each gene are 
highly consistent within samples. CLL, chronic lymphocytic leukemia.
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degrees of freedom (where N is the 
number of samples and M is the total 
number of observed wells). By using 
the properties of the F-distribution, we 
can determine statistically whether the 
variation of a gene between samples 
is greater than the variation within 
samples.

For our data, the residual standard 
error is estimated to be σ = 0.3907, 
and, under the null hypothesis, the 
estimated ratios σj

2 /σ2 should have an 
F-distribution with 8 and 2017 degrees 
of freedom. The 90th percentile of 
this F-distribution is bounded by σj

2 

/σ2 < 1.673 or by σj < 0.5054 (BAX); 
the 95th percentile, by σj < 0.5446 
(CD68); and the 99th percentile, by σj 
< 0.6202 (TNFβ) (Figure 2). Common 
housekeeping genes such as 18S rRNA, 
PGK1, CD71, GUSB, and GAPD had 
small standard errors (less than 0.4). 
This level of variability of housekeeping 
genes is consistent with other published 
results (12,17). In contrast, CD38, which 
is known to vary and is reported to have 
prognostic significance in CLL (19) 
had one of the largest standard errors 
(greater than 3.2). 

Normalization

Writing yij  • for the average over 
replicate wells of the measurements 
of gene j in sample i, the comparative 
Ct (ΔΔCt) method chooses a calibrator 
sample i = 0 and an endogenous control 
j = 0 and uses the values

ΔΔCt(i,j) = (yij  • - yi0  •) - (y0j  • - y00  •). 
 [Eq. 1]

Under model 5, a simple algebraic 
calculation shows that this is equivalent 
to

ΔΔCt(i,j) = (Cij - Ci0) - (C0j - C00). 
 [Eq. 2]

As a calibrator, we used the average 
over all experimental samples. We 
evaluated several choices of endog-
enous control. First, we normalized 
to the geometric mean of nonvarying 
genes, based on the 90th percentile of 
the F-distribution. Next, we looked at 
single-gene normalization with five 
separate housekeeping genes: GUSB, 
PGK1, GAPD, 18S, and TFRC. To 
compare methods, we computed the 
standard deviation across samples 

of the normalized values (ΔΔCt) for 
each method (Figure 3). Normalizing 
to the geometric mean gave smaller 
standard deviations for almost all 
genes compared to any single-gene 
normalization. The best single-gene 
normalizations were obtained using 
PGK1, which also had the smallest 
standard error in model 5. Finally, we 
normalized to the geometric means of 
different number of genes (Supple-
mentary Figure S15). Using the first 5 

genes gave results comparable to using 
PGK1 alone; using 10 or 15 genes 
gave results comparable to using all 20 
genes.

Comparison of U133A GeneChip 
Microarrays and Low-Density 
Arrays

In order to compare the results 
from the U133A chips and the 
TaqMan Immune Profiling cards, we 

Figure 3. Plots of the standard deviation across samples of the 20 least variable genes. The genes in-
cluded were based on the mixed-effects model 5 after normalizing to the geometric mean of all 20 genes 
(o) or to individual housekeeping genes (+, PGK1; ×, GAPD; ∇, TFRC; ◊, 18S; Δ, GUSB).
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Figure 2. Estimates of the standard error across CLL samples of individual genes based on the 
mixed-effects model 5. CLL, chronic lymphocytic leukemia.
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computed Spearman rank correlation 
coefficients over the CLL samples (n 
= 9) for each of the 87 probe sets on 
the U133A chips that matched one 
of 57 genes on the TaqMan Immune 
Profiling Low-Density Array. Under 
the null hypothesis that the probe sets 
are independent and no gene shows a 
significant correlation across platforms, 
the correlation coefficients would have 
a symmetric beta distribution, Beta((n 
- 2)/2, (n - 2)/2), shifted and scaled to 
lie on the interval from -1 to 1 (20). 
Justification for the comparison of 
the observed rank correlations with 
the beta distribution is provided in 
the supplementary material available 
at bioinformatics.mdanderson.
org/Supplements/MicroFluidics. A 
histogram of the observed correla-
tions shows substantial enrichment of 
highly correlated genes compared with 
the null distribution; that is, bars that 
extend above the curve on the right end 
of the graph represent groups of genes 
whose expression is more highly corre-
lated between platforms than would be 
expected by chance (Figure 4).

We next tried to explain why some 
probe sets were poorly correlated. The 
observed distribution of correlations in 
Figure 4 is bimodal, with the highest 
mode peaking near 0.8. We defined 

a gene to be poorly correlated if its 
observed correlation fell significantly 
below the expected value if the true 
correlation were 0.8. By simulating 
10,000 pairs of length 9 vectors with 
correlation 0.8, we determined that 
95% of the observed rank correlations 
would be expected to lie above 0.35, 
and 99% would be expected to lie 
above 0.08. In our data, 24 of the 27 
probe sets with correlation less than 
0.08, and 35 of the 42 probe sets with 
correlation less than 0.35, matched 
genes that either showed little variation 
(defined as a standard error less than 
0.5054, the 90th percentile of the F-
distribution) or were expressed at low 
levels by real-time RT-PCR (defined as 
a relative log abundance less than 10). 
Thus, the correlation between real-time 
RT-PCR and microarrays was poor for 
genes that were expressed at low levels 
or did not vary across samples.

DISCUSSION

In conventional real-time RT-PCR 
experiments, the observed Ct values 
of the target genes in an experimental 
sample are normalized both to a 
calibrator sample (e.g., total RNA 
prepared from a standard cell line) and 

to an endogenous control gene (e.g., 
18S rRNA) using the ΔΔCt method (1). 
In such experiments, the calibrator and 
the endogenous control are processed in 
parallel with the experimental samples 
and the target genes on the same 96-
well plate. Because the calibrator and 
the experimental samples are processed 
under identical thermal cycling condi-
tions, normalization to the calibrator 
automatically adjusts for minor differ-
ences in those conditions between runs. 
Normalization of the target genes to the 
endogenous control (housekeeping) 
gene adjusts for differences in the RNA 
quantity and quality across samples.

Experiments using the TaqMan 
Low-Density Array microfluidics 
cards differ from conventional real-
time RT-PCR assays in two ways. 
First, depending on the experiment, 
each sample may be run on a separate 
card. Using a calibrator sample from 
a separate card may introduce bias or 
increase variability because it may 
be processed under different thermal 
cycling conditions. Second, because 
there may be as many as 384 genes 
per card, there is a wider choice of 
endogenous controls. The Immune 
Profiling Low-Density Array contains 
probes and primers for several common 
housekeeping genes, including GAPD, 
GUSB, PGK1, TFRC, and 18S rRNA. 
The best choice of housekeeping 
gene to use as an endogenous control 
varies, depending on the kinds of tissue 
samples used in the experiment. Both 
differences in the experimental method 
must be accounted for when analyzing 
real-time RT-PCR data from TaqMan 
Low-Density Arrays.

In our study, we replaced the 
external calibrator with the mean across 
all of the samples. A key advantage 
to using the mean is that it gives valid 
measurements for all genes that are 
detected in the experimental samples; 
an external calibrator can only be used 
to normalize a gene if it expresses that 
gene in a detectable amount. While it 
might be possible to select a calibrator 
that expresses many of the target 
genes, it seems unlikely that one could 
find a calibrator that expresses all of 
the genes on the Immune Profiling 
card. In previous conventional real-
time RT-PCR experiments, we used 
a Burkitt lymphoma cell line, GA-10, 

Figure 4. Histogram of observed correlation coefficients between genes on Affymetrix U133A 
GeneChip microarrays and TaqMan Low-Density Arrays. The overlaid gray curve is the expected 
null distribution if no genes are significantly correlated; the overlaid black curve is a smooth estimate 
of the observed distribution, obtained by a B-spline fit after log transformation. QRT-PCR, real-time 
reverse transcription PCR.
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as the calibrator (13). However, 11 of 
the 62 genes that were expressed in all 
nine CLL samples were unexpressed 
in GA-10 (data not shown). One 
tempting alternative is to designate one 
experimental sample as a “baseline” 
and normalize the other samples to 
the baseline. This alternative would 
introduce an asymmetry, and might 
introduce a bias; that depends on the 
choice of baseline. By using the mean, 
we avoid this asymmetry by averaging 
over all possible choices of baseline.

By now, there is ample evidence that 
no single housekeeping gene will work 
well in all studies (5–11) and that better 
results will be obtained using multiple 
housekeeping genes (3,12,16,17). The 
key question, then, is how to identify 
valid endogenous controls for a specific 
study. Andersen et al. (16) and Szabo 
et al. (17) have shown that statistical 
modeling of the data can help solve 
this problem. In our study, however, 
model 1A, as proposed in References 
16 and 17, proved inferior both to 
the fixed-effects model 2A and to the 
random-effects model 5. Better models 
were obtained by explicitly including 
a term (γij or Cij) that allowed genes 
to be expressed at different levels in 
different samples. Without this term, 
the biological variability between 
samples is confounded with the 
technological variability of the assay. 
In spite of the AIC and BIC results, 
we contend that the random-effects 
model 5 is better than the fixed-effects 
model 2A for identifying housekeeping 
genes. In order to decide if gene j is a 
housekeeping gene using model 2A, 
one must test the hypothesis γij = 0 for 
all i. Technically, this hypothesis only 
applies to the specific samples included 
in the study and does not extend to 
the population of similar samples that 
might be included in future studies. By 
contrast, the random effect Cij ~ N(0, 
σj

2) in model 5 is used to estimate the 
variability of gene j in the population, 
allowing us to draw inferences about 
the entire population of CLL patients 
and not just the specific samples used in 
this study. This property of the random-
effects model is a major motivation 
behind their development (18).

One can argue that, because of 
the AIC and BIC results, model 2A 
is better than model 5 for normal-

ization. However, it is unclear whether 
researchers would use two models 
on the same data set (one to select 
housekeeping genes and another to 
normalize). To determine how much 
the models differ, we looked at the 
predicted values from each model for 
all 9 × 62 = 558 gene-sample combina-
tions. The differences in the predictions 
had a mean of -0.00055 and a standard 
deviation of 0.0787, and these differ-
ences were approximately normally 
distributed. So, one would expect 99% 
of the differences to be less than 0.2034 
in absolute value. There were only a 
few more outliers than expected; 18 
of the 558 predicted values differed 
by more than 0.2034, and the largest 
difference was 0.41. To put these 
numbers in perspective, our estimate 
of the residual standard error was 0.39, 
suggesting that the variability attrib-
utable to the choice of model is roughly 
the same as that in replicate wells. For 
these reasons, we prefer model 5. 

There are two reasons why we did 
not observe large positive correlations 
for all probe sets in Figure 4. First, as 
we have shown above, many genes on 
the Immune Profiling card are effec-
tively expressed at a constant level 
across all of the CLL samples. For 
these genes, the technological variation 
in expression levels dominates the 
biological variation. Not surprisingly, 
the sources of technological variation 
are very different on GeneChip micro-
arrays than they are on the Immune 
Profiling cards. So, there is no reason 
to expect them to correlate. Second, 
the dynamic range of the real-time 
RT-PCR measurements is much wider 
than the dynamic range of GeneChip 
microarrays. As we have shown above, 
the dynamic range of real-time RT-
PCR is approximately seven orders of 
magnitude (also see Supplementary 
Figure S16). By contrast, analyses of 
spike-in experiments performed by 
Affymetrix suggest that the dynamic 
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range of the U133A GeneChip is about 
three orders of magnitude (21,22). 
Similar dynamic ranges have been 
reported for cDNA microarrays (23). 
Thus, genes whose mean expression 
level is low, based on real-time RT-
PCR, are less likely to be measured 
accurately on the U133A GeneChip, 
where they will be obscured by 
relatively large noise levels. When one 
restricts the analysis to higher intensity 
genes whose expression varies signifi-
cantly between samples, then the 
results are well correlated between the 
two technology platforms.

ACKNOWLEDGMENTS

The authors thank Lynn L. Barron 
and Candy Cromwell for expert techni-
cal assistance. This work was support-
ed by a grant from the Commonwealth 
Foundation for Cancer Research to 
L.V.A. and K.R.C. and Mr. and Mrs. 
William H. Goodwin, Jr. The Microar-
ray Core Facility is supported by Can-
cer Center Support grant no. 16672.

COMPETING INTERESTS 
STATEMENT

K.Y.L., A.F., and A.S. are employed 
by Applied Biosystems Group (Applera 
Corporation), the manufacturer of a 
number of products used in this study. 
The other authors declare no compet-
ing interests.

REFERENCES

1.Livak, K.J. and T.D. Schmittgen. 2001. 
Analysis of relative gene expression data us-
ing real-time quantitative PCR and the 2(-Del-
ta Delta C(T)) Method. Methods 25:402-408.

2.Suzuki, T., P.J. Higgins, and D.R. Crawford. 
2000. Control selection for RNA quantitation. 
BioTechniques 29:332-337.

3.Tricarico, C., P. Pinzani, S. Bianchi, M. 
Paglierani, V. Distante, M. Pazzagli, S.A. 
Bustin, and C. Orlando. 2002. Quantitative 
real-time reverse transcription polymerase 
chain reaction: normalization to rRNA or 
single housekeeping genes is inappropriate 
for human tissue biopsies. Anal. Biochem. 
309:293-300.

4.Lee, P.D., R. Sladek, C.M. Greenwood, and 
T.J. Hudson. 2002. Control genes and vari-
ability: absence of ubiquitous reference tran-
scripts in diverse mammalian expression stud-
ies. Genome Res. 12:292-297.

5.Schmittgen, T.D. and B.A. Zakrajsek. 2000. 
Effect of experimental treatment on house-
keeping gene expression: validation by real-
time, quantitative RT-PCR. J. Biochem. Bio-
phys. Methods 46:69-81.

6.Goidin, D., A. Mamessier, M.J. Staquet, D. 
Schmitt, and O. Berthier-Vergnes. 2001. 
Ribosomal 18S RNA prevails over glyceral-
dehyde-3-phosphate dehydrogenase and beta-
actin genes as internal standard for quantita-
tive comparison of mRNA levels in invasive 
and noninvasive human melanoma cell sub-
populations. Anal. Biochem. 295:17-21.

7.Gorzelniak, K., J. Janke, S. Engeli, and 
A.M. Sharma. 2001. Validation of endog-
enous controls for gene expression studies in 
human adipocytes and preadipocytes. Horm. 
Metab. Res. 33:625-627.

8.Deindl, E., K. Boengler, N. van Royen, and 
W. Schaper. 2002. Differential expression of 
GAPDH and beta3-actin in growing collateral 
arteries. Mol. Cell Biochem. 236:139-146.

9.Prieto-Alamo, M.J., J.M. Cabrera-Luque, 
and C. Pueyo. 2003. Absolute quantitation 
of normal and ROS-induced patterns of gene 
expression: an in vivo real-time PCR study in 
mice. Gene Expr. 11:23-34.

10.Schmid, H., C.D. Cohen, A. Henger, S. Ir-
rgang, D. Schlondorff, and M. Kretzler. 
2003. Validation of endogenous controls for 
gene expression analysis in microdissected 
human renal biopsies. Kidney Int. 64:356-
360.

11.Aerts, J.L., M.I. Gonzales, and S.L. Topa-
lian. 2004. Selection of appropriate control 
genes to assess expression of tumor antigens 
using real-time RT-PCR. BioTechniques 
36:84-91.

12.Vandesompele, J., K. De Preter, F. Pattyn, 
B. Poppe, N. Van Roy, A. De Paepe, and F. 
Speleman. 2002. Accurate normalization of 
real-time quantitative RT-PCR data by geo-
metric averaging of multiple internal control 
genes. Genome Biol. 3:research0034.1-
0034.11.

13.McCarthy, H., W.G. Wierda, L.L. Barron, 
C.C. Cromwell, J. Wang, K.R. Coombes, 
R. Rangel, K.S. Elenitoba-Johnson, et al. 
2003. High expression of activation-induced 
cytidine deaminase (AID) and splice vari-
ants is a distinctive feature of poor progno-
sis chronic lymphocytic leukemia. Blood 
101:4903-4908.

14.Gold, D., K.R. Coombes, D. Medhane, A. 
Ramaswamy, Z. Ju, L. Strong, J.S. Koo, 
and M. Kapoor. 2004. A comparative analy-
sis of data generated using two different tar-
get preparation methods for hybridization to 
high-density oligonucleotide microarrays. 
BMC Genomics 5:2.

15.Malarstig, A., T. Tenno, S. Jossan, M. Ab-
erg, and A. Siegbahn. 2003. A quantita-
tive real-time PCR method for tissue factor 
mRNA. Thromb. Res. 112:175-183.

16.Andersen, C.L., J.L. Jensen, and T.F. 
Orntoft. 2004. Normalization of real-time 
quantitative reverse transcription-PCR data: 
a model-based variance estimation approach 
to identify genes suited for normalization, ap-
plied to bladder and colon cancer data sets. 
Cancer Res. 64:5245-5250.

17.Szabo, A., C.M. Perou, M. Karaca, L. Per-

reard, J.F. Quackenbush, and P.S. Bernard. 
2004. Statistical modeling for selecting house-
keeper genes. Genome Biol. 5:R59.

18.Pinheiro J.C. and D.M. Bates. 2000. Mixed-
Effects Models in S and S-PLUS. Springer-
Verlag, New York.

19.Damle, R.N., T. Wasil, F. Fais, F. Ghiotto, A. 
Valetto, S.L. Allen, A. Buchbinder, D. Bud-
man, et al. 1999. Ig V gene mutation status 
and CD38 expression as novel prognostic 
indicators in chronic lymphocytic leukemia. 
Blood 94:1840-1847.

20.Fisher, R.A. 1915. Frequency distribution 
of the values of the correlation coefficient in 
samples from an indefinitely large population. 
Biometrika 10:507-521.

21.Irizarry, R.A., B.M. Bolstad, F. Collin, L.M. 
Cope, B. Hobbs, and T.P. Speed. 2003. Sum-
maries of Affymetrix GeneChip probe level 
data. Nucleic Acids Res. 31:e15.

22.Zhang, L., M.F. Miles, and K.D. Aldape. 
2003. A model of molecular interactions on 
short oligonucleotide microarrays. Nat. Bio-
technol. 21:818-821.

23.Worley, J., K. Bechtol, S. Penn, D. Roach, 
D. Hanzel, M. Trounstine, and D. Barker. 
2000. A systems approach to fabricating and 
analyzing DNA microarrays, p. 65-86. In M. 
Schena (Ed.), Microarray Biochip Technol-
ogy. Eaton Publishing, Natick, MA.

Received 2 August 2004; accepted 
11 January 2005.

Address correspondence to:

Kevin R. Coombes
Department of Biostatistics and Applied  
   Mathematics
University of Texas M.D. Anderson Cancer  
   Center
1515 Holcombe Blvd., Box 447
Houston, TX 77030, USA
e-mail: kcoombes@mdanderson.org


