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ABSTRACT

Accurate normalization is an absolute prerequisite for correct meas-
urement of gene expression. For quantitative real-time reverse transcrip-
tion-PCR (RT-PCR), the most commonly used normalization strategy
involves standardization to a single constitutively expressed control gene.
However, in recent years, it has become clear that no single gene is
constitutively expressed in all cell types and under all experimental con-
ditions, implying that the expression stability of the intended control gene
has to be verified before each experiment. We outline a novel, innovative,
and robust strategy to identify stably expressed genes among a set of
candidate normalization genes. The strategy is rooted in a mathematical
model of gene expression that enables estimation not only of the overall
variation of the candidate normalization genes but also of the variation
between sample subgroups of the sample set. Notably, the strategy pro-
vides a direct measure for the estimated expression variation, enabling the
user to evaluate the systematic error introduced when using the gene. In a
side-by-side comparison with a previously published strategy, our model-
based approach performed in a more robust manner and showed less
sensitivity toward coregulation of the candidate normalization genes. We
used the model-based strategy to identify genes suited to normalize quan-
titative RT-PCR data from colon cancer and bladder cancer. These genes
are UBC, GAPD, and TPT1 for the colon and HSPCB, TEGT, and ATP5B
for the bladder. The presented strategy can be applied to evaluate the
suitability of any normalization gene candidate in any kind of experimen-
tal design and should allow more reliable normalization of RT-PCR data.

INTRODUCTION

When performing a quantitative reverse transcription-PCR (RT-
PCR) analysis, several parameters need to be controlled to obtain
reliable quantitative expression measures. These include variations in
initial sample amount, RNA recovery, RNA integrity, efficiency of
cDNA synthesis, and differences in the overall transcriptional activity
of the tissues or cells analyzed.

To date, the most frequently used approach for normalization of the
above-mentioned parameters is an internal control gene. For a gene to
be valid as a control gene, its expression should not vary in the tissues
or cells under investigation. The ideal internal control gene is univer-
sally valid, with a constant expression level across all thinkable tissue
samples, cells, experimental treatments, and designs. Unfortunately,
literature shows that as of yet, no such housekeeping gene has been
found (1–7), and a recent study touching on the subject even stated
that such a gene does not exist (8). It might be true that a universally
valid housekeeping gene does not exist, but luckily for most experi-
mental designs, this is not necessary either. Most experimental de-
signs are restricted to a few tissue types or a few different histological

stages of the same tissue, e.g., normal and tumor, untreated and
treated, and so forth, and it is likely that one or more genes are
constitutively expressed across such restricted designs. However, the
task of identifying these genes is not trivial. It is composed of two
steps: first, to identify which genes are likely candidates; and second,
to verify the stability of these candidates.

In this study, we aimed at identifying normalization genes suited for
investigations of experimental designs covering various stages of
bladder or colon cancer. We screened high-density oligonucleotide
array-based expression profiles to identify possible bladder and colon
normalization gene candidates. The next task was to evaluate the
expression stability of these candidates in our RT-PCR experimental
designs. According to the generally accepted criterion, a suited nor-
malization gene is a gene that shows no expression variation (or at
least, only a limited extent of variation) across the investigated sample
set. From our point of view, this criterion is too simple. In practice, all
genes will show some variation, making it important to remember that
in most RT-PCR experiments, the sample set consists of two or more
sample groups, e.g., normal and tumor, and that even limited system-
atic intergroup variation of the candidate could lead to an incorrect
interpretation of the results. Thus, we believe that in addition to
“overall expression variation,” the candidate should also be evaluated
as to whether it shows systematic variation across the sample sub-
groups. Evaluating expression stability of a candidate normalization
gene represents a circular problem (i.e., how can the expression
stability of a candidate be evaluated if no reliable measure is available
to normalize the candidate?). We overcome this circular problem by
developing a novel evaluation strategy, called the “model-based ap-
proach to estimation of expression variation.” In this article, this
approach will be outlined, applied, and compared with another ex-
pression variance estimation procedure reported recently.

MATERIALS AND METHODS

GeneChip Expression Profiling Data

Expression profiling data from 99 bladder (normal and Ta, T1, and T2–4) and
161 colon (normal and Dukes’ A, B, C, and D) samples were generated
previously, in-house, using Affymetrix HuGeneFL GeneChip arrays [70 blad-
der and 54 colon specimens (9, 10)] and HG-U133A GeneChip arrays (29
bladder and 107 colon specimens).3 All GeneChip raw data were normalized
using the RMA normalization approach in the Bioconductor Affy package
(11, 12).

Selection of Normalization Gene Candidates

Fundamentally, a normalization gene candidate has to fulfill two criteria: (a)
it has to be stably expressed in the tissue of interest; and (b) it has to have an
expression level above background. To obtain approximately the same number
of candidate genes for the two tissues, we took those genes with a coefficient
of variation of �0.20 and an average signal intensity of �1800 for colon,
whereas we took genes with a coefficient of variation of �0.40 and an average
signal intensity of �350 for bladder.

Received 2/13/04; revised 4/19/04; accepted 5/27/04.
Grant support: University and County of Aarhus and the Danish Research Council.
The costs of publication of this article were defrayed in part by the payment of page

charges. This article must therefore be hereby marked advertisement in accordance with
18 U.S.C. Section 1734 solely to indicate this fact.

Note: Supplementary data for this article can be found at Cancer Research Online
(http://cancerres.aacrjournals.org) and at http://www.mdl.dk/SupplDataPub.htm.

Requests for reprints: Torben F. Ørntoft, Molecular Diagnostic Laboratory, Depart-
ment of Clinical Biochemistry, Aarhus University Hospital, Skejby, DK-8200 Aarhus N,
Denmark. Phone: 45-89495100; Fax: 45-89496018; E-mail: orntoft@kba.sks.au.dk. 3 T. Ørntoft, unpublished data.

5245



To minimize the likelihood of selecting false positive genes, we used the
fact that for each tissue, we had expression profiling data available from two
independent sample sets, each analyzed with its own GeneChip array format,
i.e., with different probe and probe set designs, making it possible to prefer-
entially choose the candidates among the genes fulfilling the inclusion criteria
in both sample sets. Attention was paid to avoid genes whose GeneChip array
probe sets were sensitive to more than a single transcript, e.g., probe sets
sensitive to multiple splice variants.

Primer Design

Primers were designed using the primer analysis software Primer Express
v2.0 (Applied Biosystems). Designs were based on publicly available se-
quences (Table 1). Whenever possible, the forward and reverse primers were
placed in exons separated by an intron at least 500-bp long. To limit sensitivity
toward pseudogenes, care was taken to place at least one of the primers in a
region where the gene of interest was distinct from these. To avoid problems
caused by sequence variability between individual patients, primers were
designed to sequences free of known polymorphisms. In the cases in which the
gene of interest had multiple splice variants, primers were designed specifi-
cally to the variant detected by the GeneChip array. For each gene, a minimum
of two forward and two reverse primers were designed. All combinations of
these were tested in real-time RT-PCR. The primer pairs in Table 2 all
produced a single product and amplified the target transcript with equal
efficiency over a 1000-fold range of input material.

Patient Material

We acquired 28 tumor biopsy samples (10 Ta, 8 T1, and 10 T2–4 samples)
from bladder and 10 normal and 30 tumor samples (10 Dukes’ A, 10 Dukes’
B, and 10 Dukes’ C samples) from colon after the amount of tissue necessary
for routine pathology examination had been removed. We froze the tumor
samples immediately after surgery and stored them at �80°C in a guanidinium
thiocyanate-containing solution. Informed consent was obtained in all cases,
and protocols were approved by the scientific ethical committee of Aarhus
County.

RNA Purification and cDNA Preparation

We isolated total RNA from crude tumor biopsy samples using a
Polytron homogenizer and the RNAzol B RNA isolation method (WAK-
Chemie Medical GmbH). RNA integrity was confirmed by gel electro-
phoresis or Bioanalyzer (Agilent Technologies). First-strand cDNA syn-
thesis was carried out using the SuperScript II System (Life Technologies,
Inc.). One �g of total RNA and 2 �l of 250 �M random nonamers in a total
volume of 12 �l were incubated for 10 min at 70°C and chilled on ice. After
adding 4 �l of 1st Strand Buffer, 1 �l of DTT (0.1 M), 2 �l of deoxynucle-
otide triphosphate mix (10 mM), and 1 �l of SuperScript reverse tran-
scriptase II (200 units/�l), the reaction was incubated for 1 h at 42°C and,
finally, for 5 min at 95°C. The cDNA was diluted 1:20 for use in real-time
PCR.

Table 1 Candidate normalization genes evaluated in this study

Symbol Gene name Accession no.a
Locus
link Function Locationb

Pseudo-
genesc Tissued

FLOT2 Flotillin 2 NM_004475.1 2319 May act as a scaffolding protein within caveolar
membranes. May be involved in epidermal cell
adhesion and epidermal structure and function.

17q11.2 No B

ATP5B ATP synthase, H� transporting,
mitochondrial F1 complex, �
polypeptide

NM_001686.1 506 Produces ATP from ADP in the presence of a proton
gradient across the membrane. The � chain is the
catalytic subunit.

12q13.3 Yes B

HSPCB Heat shock 90-kDa protein 1, � ENST00000265413 3326 Molecular chaperone. Has ATPase activity (by
similarity).

6p21.1 Yes B

S100A6 S100 calcium-binding protein
A6 (calcyclin)

ENST00000292162 6277 May function in stimulation of Ca2�-dependent insulin
release, stimulation of prolactin secretion, and
exocytosis.

1q21.3 Yes B

TEGT Testis enhanced gene transcript
(BAX inhibitor 1)

ENST00000267115 7009 Suppressor of apoptosis 12q13.12 No B

CFL1 Cofilin 1 (non-muscle) ENST00000308162 1072 Controls reversibly actin polymerization and
depolymerization. It is the major component of
intranuclear and cytoplasmic actin rods.

11q13.1 Yes B and C

FLJ20030 Hypothetical protein FLJ20030 ENST00000218328 54789 Unknown Xp11.22 No B and C
TPT1 Tumor protein, translationally

controlled 1
ENST00000255477 7178 Unknown 13q14.13 Yes B and C

UBBe Ubiquitin B NM_018955.1 7314 Protein degradation 17p11.2 Yes B and C
UBCe Ubiquitin C ENST00000280590 7316 Protein degradation 12q24.31 Yes B and C
RPS13f Ribosomal protein S13 NM_001017.2 6207 Encodes a ribosomal protein that is a component of the

40S subunit
11p15.1 Yes B and C

RPS23
f

Ribosomal protein S23 NM_001025.1 6228 Encodes a ribosomal protein that is a component of the
40S subunit

5q14.2 Yes B and C

GAPD Glyceraldehyde-3-phosphate
dehydrogenase

NM_002046 2597 Catalyzes the reversible oxidative phosphorylation of
glyceraldehyde-3-phosphate

12p13.31 Yes B and C

ACTB Actin, � NM_001101.2 60 Cytoskeletal structural protein involved in various
types of cell motility

7p22.1 Yes B and C

CLTC Clathrin, heavy
polypeptide (Hc)

NM_004859.1 1213 Clathrin is the major protein of the polyhedral coat of
coated pits and vesicles.

17q23.2 Yes C

NACA Nascent-polypeptide-associated
complex alpha polypeptide

ENST00000228312 4666 The nascent-polypeptide-associated complex binds
newly synthesized polypeptide chains as they emerge
from the ribosome and prevents them from being
incorrectly translocated to the endoplasmic reticulum

12q13.3 Yes C

SUI1 Putative translation initiation
factor

ENST0000031083 10209 May act as a negative growth regulator 17q21.2 Yes C

TUBA6 Tubulin alpha 6 ENST00000301072 84790 Cytoskeletal structural protein 12q13.12 Yes C
a Primer design based on this sequence. The database sources are the NCBI Reference Sequence database (http://www.ncbi.nlm.nih.gov/RefSeq/) and the Ensembl database

(http://www.ensembl.org/).
b Ensembl cytogenetic band.
c Determined by BLAT search of Human June 2002 Freeze (Ref. 14).
d Identified from bladder (B) and colon (C).
e Genes belonging to the same functional class.
f Genes belonging to the same functional class.
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Real-Time RT-PCR

Real-time PCR analysis was performed using the primers shown in Table 2.
Real-time RT-PCR was performed on ABI PRISM 7000 Sequence Detection
System using the SYBR Green PCR Master Mix (Applied Biosystems). The
PCR reaction consisted of 12.5 �l of SYBR Green PCR Master Mix, 300 nM

of forward and reverse primers, and 2.0 �l of 1:20-diluted template cDNA in
a total volume of 25 �l. Cycling was performed using the default conditions of
the ABI Prism 7000 SDS Software 1.0: 2 min at 50°C, 10 min at 95°C,
followed by 40 rounds of 15 s at 95°C and 1 min at 60°C. To verify that the
used primer pair produced only a single product, a dissociation protocol was
added after thermocycling, determining dissociation of the PCR products from
65°C to 95°C. The assay included a no-template control, a standard curve of
four serial dilution points (in steps of 10-fold) of a cDNA mixture, and each of
the test cDNAs.

The Model-Based Approach to Estimation of Expression Variation

The Model. Let yigj be the log-transformed measured gene expression for
gene i in the j’th sample of group g. We have a total of k genes and G groups,
and the number of samples in group g is ng.

A natural model is to write yigj as a sum of three terms.

yigj � �ig � �gj � �igj , (Eq. A)

The first term, �ig, represents the general expression level for candidate
gene i within group g. The second term, �gj, represents the amount of mRNA
in the sample j. The last term, �igj, is the random variation caused by biological
and experimental factors, with mean zero and variance �ig

2 .
Our interest is to estimate the intragroup variation �ig

2 as well as the
intergroup variation measured by the variation in �ig, g � 1,. . . , G.

Estimation of the Intragroup Variation. To estimate the intragroup vari-
ances, we form the usual residuals for an additive model, square these, and take
the sum over the samples belonging to the group. Dividing the sum by
(ng � 1)(1 � 2/k), we get the term sig

2 , and the estimate of �ig
2 is

�̂ig
2 � sig

2 	
1

k�k 	 1�
�
v�1

k

svg
2 (Eq. B)

Most importantly, �̂ig
2 is an unbiased estimate of �ig

2 . For details on the
derivation and properties of �̂ig

2 , see the supplementary data.
Estimation of the Intergroup Variation. We next turn to the problem of

taking into account the intergroup variation. Let zig be the average of yigj over
all of the samples in group g. If 
g is the average of �gj over the samples in
group g, the mean of zig is �ig � 
g, and the variance is �ig

2 /ng. With respect
to intergroup variation, it is the variation of zig � 
g, g � 1,. . . , G that defines
the suitability of gene i as a control gene.

Stability Value. Having estimated both the intra- and intergroup variation,
we combine the two into a stability value, which intuitively adds the two

sources of variation and thus represents a practical measure of the systematic
error that will be introduced when using the investigated gene.

Let �i be the mean of �ig. For a future experiment, it is the distribution of
zig � 
g � �i that defines the stability of gene i. However, we find a
distribution to be an impractical stability measure and therefore reduce it to a
one-dimensional value by defining the stability value �ig to be the absolute
value of the mean � 1 SD. We use a Bayesian argument to find the distribution
of zig � 
g � �i in a future experiment (see supplementary data for details).
Finally, to implement our stability measure, we need to estimate zig � 
g � �i.
To this end, we make the assumption that the average of �ig over the genes
i � 1,. . . k is independent of the group g. Then zig � 
g � �i is naturally
estimated by dig � zig � z�i� � z��g � z���, where a bar indicates an average, and
the stability value becomes

�ig �
�̂2�dig�

�̂2 � �̂ig
2 /ng

� ��̂ig
2 /ng �

�̂2�̂ig
2 /ng

�̂2 � �̂ig
2 /ng

�Eq. C)

where �2 is the variance of �ig. We estimate �2 by

1
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G

dig
2 	

1

kG
�
i�1

k �
g�1

G

�̂ig
2 /ng �Eq. D)

if this is positive; otherwise, we set it to 0.
To get a single value for gene i, we let �i be the average of �ig, g � 1,. . . ,

G. For details on the derivation and for a stability measure based on an average
of several control genes, see the supplementary data.

Requirements. The validity of the approach is related to the number of
samples and candidates analyzed, i.e., the more samples and candidates, the
better the estimates. The sample set should minimally contain 8 samples/group,
and the number of candidates should be at least 3 for technical reasons, but
5–10 are recommended. It is a further requirement that the candidates are
chosen from a set of genes with no prior expectation of expression difference
between groups. This requirement is used to say that the average expression
level is approximately the same in the different groups. Thus, instead of
assuming the individual candidate genes to show no systematic intergroup
variation, we assume the average of the candidate genes to show no systematic
variation.

RESULTS AND DISCUSSION

Selection of Normalization Gene Candidates (from Array-
Based Expression Profiles). The large and constantly growing
amount of array-based expression profiling data represents an excel-
lent source for identification of genes with minimal expression vari-
ation. Using the criteria specified in “Materials and Methods,” we
screened 99 bladder and 161 colon sample expression profiles for
such genes. The genes meeting the criteria were, for the most part,

Table 2 Primer sequences for candidate normalization genes

Symbol Forward primer Reverse primer Amplicon size Intron spanning

FLOT2 TGCCGTGGTGCAGAGAGA GGTGTCTGCCATGAACTTCACA 115 Yes
ATP5B TCACCCAGGCTGGTTCAGA AGTGGCCAGGGTAGGCTGAT 80 Yes
HSPCB AAGAGAGCAAGGCAAAGTTTGAG TGGTCACAATGCAGCAAGGT 120 Yes
S100A6 ACAAGCACACCCTGAGCAAGA CCATCAGCCTTGCAATTTCA 99 Yes
TEGT TGCTGGATTTGCATTCCTTACA ACGGCGCCTGGCATAGA 151 Yes
CFL1 GAAGGAGGATCTGGTGTTTATCTTCT GCTGGCATAAATCATTTTGCTCTT 73 Yes
FLJ20030 GGCTTTGGACTTGCAGAATGTT ATAATGTAGTGTGTTACTAGTTGTCCTTTTCTC 144 Yes
TPT1 GATCGCGGACGGGTTGT TTCAGCGGAGGCATTTCC 100 Yes
UBB GGGCGGTTGGCTTTGTT GACCTGTTAGCGGATACCAGGAT 91 Yes
UBC GATTTGGGTCGCGGTTCTT TGCCTTGACATTCTCGATGGT 134 Yes
RPS13 CGAAAGCATCTTGAGAGGAACA TCGAGCCAAACGGTGAATC 87 Yes
RPS23 TGGAGGTGCTTCTCATGCAA AATGGCAGAATTTGGCTGTTTG 76 Yes
GAPD TCTCCTCTGACTTCAACAGCGAC CCCTGTTGCTGTAGCCAAATTC 126 Yes
ACTB GCCCTGAGGCACTCTTCCA CGGATGTCCACGTCACACTTC 100 Yes
CLTC TCGCTACCTGGTACGTCGAAA GCCTTTACAGTTACTGACACTTCTTCAG 150 Yes
NACA GCAAAACAGAGTCGGAGTGAAAA GTAACTCCTGTAACCTGCCGAAGA 77 Yes
SUI1 CAGGGTGACCAACGCAAGA CACAAGCACTTAAAACCCATGAAC 96 Yes
TUBA6 GCAGACCCCTTCAAGTTCTAGTCA GTAGAGCTCCCAGCAGGCATT 95 Yes
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novel with respect to the normalization issue but also included a few
known normalization genes, e.g., UBC and ACTB. Interestingly, the
most commonly reported normalization gene, GAPD, did not meet the
criteria in either of the tissues. However, for reasons of comparison,
we decided to include GAPD in the list of candidates anyway.

Fourteen gene candidates for bladder and 13 gene candidates for
colon were selected for additional studies (see Table 1 for full gene
name, accession number, function, chromosomal location, and exist-
ence of pseudogenes; see Table 2 for primer sequences and indication
of whether the primer pair is intron-spanning).

Special attention was paid to select genes whose proteins belong to
different functional classes, which theoretically should reduce the
chance that the genes might be coregulated. However, for the purpose
of testing the robustness of our expression variance estimation ap-
proach, in two instances we included genes belonging to the same
class (Table 1).

Evaluation of Candidates in Real-Time RT-PCR Experiment
Designs. The expression level of the bladder and colon normalization
gene candidates was determined in 28 and 40 samples, respectively.
The raw expression values are available as a text file (see the supple-
mentary data).

A Model-Based Approach for Estimation of Expression Varia-
tion. In our pursuit of suitable normalization genes, we first turned to
previously reported approaches for evaluating normalization gene
candidates (8, 13). However, we soon realized that none of these
sufficiently evaluated the critical points outlined in the “Introduction,”
especially with respect to sample subgroups. Thus, we decided to
develop a novel approach.

This approach entails application of a mathematical model to de-
scribe the expression values measured by RT-PCR, separate analysis
of the sample subgroups, estimation of both the intra- and the inter-
group expression variation, and calculation of a candidate gene “sta-
bility value.” It is important to note that during the development of the
model-based approach we made several choices with regard to the
statistical methods used and that other choices could have been made
that would have given a similar result.

A description, based on real data, of the relationship between the
stability value and the intra- and intergroup expression variations as
well as a study demonstrating the reproducibility of the strategy is
available as supplementary data.

Ranking of the Candidate Normalization Genes. We have writ-
ten a Visual Basic application for Microsoft Excel, termed Norm-
Finder, which automatically calculates the stability value for all can-
didate normalization genes tested on a sample set containing any
number of samples organized in any given number of groups. Norm-
Finder is freely available from the authors on request. We used this
application to rank all our colon and bladder normalization gene
candidates according to their stability value (Table 3).

The top three ranked candidates were UBC, GAPD, and TPT1 for
colon and HSPCB, TEGT, and ATP5B for bladder (i.e., of the tested
candidates, these will introduce the least systematic error when used
as normalization genes). Interestingly, the ranking order indicates that
none of the known normalization genes among the candidates are
suited for normalizing bladder cancer quantitative RT-PCR data.
GAPD did not conform to the candidate selection criteria for either of
the tissues; however, for colon, it is among the top three ranked
candidates. Although seemingly surprising, this finding probably just
reflects differences in the platforms used for quantification (quantita-
tive RT-PCR and GeneChip arrays). We note in passing that ACTB, a
gene commonly used for normalization, was ranked poorly in both
tissues.

We next investigated the reproducibility of the variance estimations
used to form the rankings. The expression levels of a number of the

candidates were measured again in 12 Ta and 14 T2–4 bladder tumors
(the raw data, assay design, and detailed description of this experi-
ment are available as supplementary data). Comparison of the esti-
mated inter- and intragroup variations with the estimations from the
original experiment revealed a tight concordance, indicating a fine
reproducibility (see Supplementary Fig. 1).

We then ranked the candidates using another recently published
strategy to identify stably expressed genes; in the remainder of this
article, this strategy is called the pairwise comparison approach (8). A
comparison of the rankings produced by this and the model-based
approach revealed them as different. The two rankings of the colon
candidates showed no resemblance whatsoever, whereas the rankings
of the bladder candidates showed some similarity (Table 3). These
discrepancies are of course caused by the differences between the
approaches. The model-based approach top ranks the candidates with
minimal estimated intra- and intergroup variation, in contrast to the
pairwise comparison approach, which tends to select those genes with
the highest degree of similarity of the expression profile across the
sample set (see “Robustness of the Model-Based Approach”). The
latter approach implies that the candidates with minimal expression
variation do not necessarily become top ranked. This we will dem-
onstrate in the following using the Ta and T2–4 groups of our bladder
data. Using these two groups, the intergroup variation corresponds to
the difference between the average expression levels of the Ta and the
T2–4 group. Furthermore, the estimated intragroup variations can be
used to calculate a confidence interval for the difference. This is
shown in Fig. 1.

Fig. 1 clearly demonstrates the different characteristics of the
candidates top ranked by the two approaches. The model-based ap-
proach selects as the two best genes the candidates with minimal
combined inter- and intragroup expression variation, whereas the
pairwise comparison approach selects two genes with a low intra-
group variation and roughly the same nonvanishing intergroup vari-
ation. To demonstrate the effect of using the different genes for
normalization, we have drawn up two target genes with log difference
between the group of �0.5 and 0.5. Using the candidates top ranked
by the model-based approach for normalization will result in both
these targets being identified as differentially expressed and with a
similar-sized fold change, although in the opposite direction. Using
the candidates top ranked by the pairwise approach, the target gene
with log difference of �0.5 will not be detected as significantly
differentially expressed, and the size of the fold change for the target
gene with log difference of 0.5 will be erroneously overestimated.

The Model-Based versus the Pairwise Comparison Approach.
We believe the model-based approach, with its account of sample
groups and its direct estimation of expression variation, provides a

Table 3 Candidate genes ranked according to their expression stability—estimated
using either the model-based or the pairwise comparison approacha

Colon Bladder

Model-based Pairwise Model-based Pairwise

UBC RPS23 and TPT1 HSPCB CFL1 and UBC
GAPD TEGT
TPT1 RPS13 ATP5B ATP5B
UBB SUI1 UBC HSPCB
TUBA6 UBC RPS23 GAPD
RPS13 GAPD RPS13 TEGT
NACA TUBA6 CFL1 RPS23
CFL1 UBB FLJ20030 RPS13
SUI1 NACA TPT1 TPT1
ACTB CFL1 UBB FLJ20030
CLTC CLTC FLOT2 FLOT2
RPS23 ACTB GAPD UBB
FLJ20030A FLJ20030A S100A6 ACTB

ACTB S100A6
a The candidates are listed with decreasing expression stability from top to bottom.
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more precise and robust measure of gene expression stability than
does the pairwise comparison approach. The latter basically ranks the
genes according to the similarity of their expression profiles. Imagine
a situation in which the sample set consists of two sample subgroups,
and all of the candidates but one show some difference between the
groups; in this case, the optimal candidate with no difference between
the groups would be excluded early on in the pairwise comparison
approach, whereas in the model-based approach, it would present with
the smallest stability value of all candidates. Furthermore, ranking
genes according to the similarity of their expression profiles, as is
done in the pairwise comparison approach, is problematic if there are
co-regulated genes among the candidates. These will inadvertently
have a tendency to show very similar expression profiles and thus,
independent of their expression stability, to be top ranked. For a more
detailed description of the differences between the model-based and
the pairwise comparison approaches, see the supplementary data.

Robustness of the Model-Based Approach. To enable assess-
ment of the robustness of the model-based approach toward correla-
tion among the candidate genes, we deliberately sought to include a
few coregulated pairs of genes in our list of candidates. This was done
in two instances by including genes encoding proteins belonging to
the same functional class (UBB and UBC; RPS13 and RPS23).

A correlation analysis of our data (bladder and colon) revealed the
expression of RPS13 and RPS23 to be correlated, whereas the expres-
sion of UBB and UBC was not correlated. A little to our surprise, the
analysis also revealed the expression of the candidates CFL1 and
ACTB to be correlated. The protein encoded by CFL1 acts as regulator
of actin polymerization and depolymerization, thus it is not com-
pletely surprising that the expressions of the two genes correlate.

The above-mentioned analysis indicates that at present, it is very
difficult, if not impossible, to foresee expression correlation of the
candidates, implying that robustness toward expression correlation is
of crucial importance. We will demonstrate this below using our colon
data. To assess the robustness of the candidate rankings toward
correlation among the candidate genes, we compared the results
obtained using all candidate genes and the results obtained when
excluding RPS23 (Fig. 2). Fig. 2 clearly demonstrates that the model-
based approach, in contrast to the pairwise comparison approach, was

not influenced by the exclusion of RPS23. Interestingly, the top three
ranked candidates of the pairwise comparison approach after RPS23
exclusion include CFL1 and ACTB (the other candidate pair with
correlated expression), emphasizing the tendency of the approach to
top rank candidates with correlated expression rather than minimal
variation.

Taken together, these results demonstrate that candidate coregula-
tion does not significantly affect the model-based approach and
equally clearly demonstrate that sensitivity to coregulation is a major
weakness of the pairwise comparison approach.

Normalization Factor (NF). In situations where no optimal nor-
malization gene has been found, it may be prudent to normalize the
data using a NF based on multiple normalization genes rather than a
single gene. The rationale is simple; the variation in the average of
multiple genes is smaller than the variation in individual genes.
Despite this fact, the use of a NF does not necessarily imply improved
normalization. Only if the NF is generated from a cautiously selected
set of genes can an improvement be expected. Furthermore, compared
with a single normalization gene, a NF has the practical implication
that multiple normalization genes have to be measured each time
instead of only one. This may be impractical, particularly when only
few target genes need to be studied, or when limited amounts of RNA
are available. Thus, the number of genes to include in the NF must be
carefully considered. Intuitively, the number of genes will be a trade-
off between practical considerations and minimizing the variation in
the NF.

Usually, the use of NFs is only considered in situations in which the
available normalization gene candidates show significant expression
variation. This variation will typically involve both intra- and inter-
group variation. In particular, the intergroup variation is critical for
the NF. If the genes are not cautiously selected, the intergroup
variation will not be eliminated by the NF but transferred to it. We
will demonstrate this using the data displayed in Fig. 1. Imagine a NF

Fig. 1. Candidates top ranked by the model-based and pairwise comparison ap-
proaches. Using the Ta and T2–4 groups of bladder data, the intergroup variation is plotted
(small black circles) as the expression difference between the two groups. The intragroup
variation is indicated by vertical bars that give a confidence interval for the difference.
Because the average of the intergroup variations is almost 0 (the thick dashed line), an
intergroup variation of �0 implies that the gene shows systematically higher expression
in Ta tumors than in T2–4 tumors and the opposite if the value is �0. The top two ranked
candidate genes of the model-based approach are indicated by stars, and the top two
ranked candidate genes of the pairwise comparison approach are indicated by squares.
The two thin dashed lines represent hypothetical target genes with a log difference of 0.5
and �0.5.

Fig. 2. Robustness of the model-based and the pairwise comparison approaches. To
assess the robustness of the candidate rankings toward correlation among the candidate
genes, we compared the results obtained using all candidate genes (solid lines) and the
results obtained when excluding RPS23 (dashed lines). The black curves represent the
stability values of the model-based approach, and the red curves represent the values used
in the sequential step of the pairwise comparison approach (precisely, these represent the
average pairwise SD for each gene at the time of its exclusion in the sequential procedure).
The top ranked genes are those with the smallest values for each method.
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generated on the basis of the three genes S100A6, FLOT2, and TPT1,
all of which show intergroup variation oriented in the same direction
(i.e., slightly higher expression in the Ta tumors than the T2–4 tumors).
This NF represents no improvement compared with the individual
genes because their intergroup variation is transferred to it. Thus, even
though the overall variation of the NF is reduced, its use would still
cause the differential expression of the target gene 0.5 log difference
between the groups to be missed. If, instead, the NF was based on
genes with opposite-directed intergroup variation, such as S100A6,
TPT1, and ACTB, it would represent an improvement, and both target
genes would correctly be identified as differentially expressed.

It is clear that a strict gene selection procedure is necessary to
generate functional NFs and that knowledge of potential intergroup
expression variation is a fundamental prerequisite.

The model-based approach outlined above provides all of the
measures needed for qualified selection of NF genes. First of all, the
estimated intergroup expression variations allow for selection of the
suited genes. Secondly, the intragroup variance estimates provide a
natural way of identifying the number of genes to include. The
optimal number of genes is reached when addition of a further gene
leads to a negligible reduction in the average of the gene variance
estimates.

In conclusion, we have described a procedure that directly and
robustly evaluates gene expression stability. The expression variation
of each evaluated candidate is directly estimated. This enables the user
to put the candidates in context because the estimated variation
directly indicates the introduced error associated with using them.
Compared with previously published procedures for identifying suit-
able normalization genes, the present approach provides more direct
measures, takes into account systematic differences between sample
subgroups, and is less affected by correlated expression of the candi-
date genes. We used the approach to identify genes suited to normal-
ize quantitative RT-PCR data from colon cancer and bladder cancer.

These genes are UBC, GAPD, and TPT1 for colon and HSPCB,
TEGT, and ATP5B for bladder.

The variance estimation approach outlined in this article can be
applied to evaluate the suitability of any normalization gene candidate
in any kind of experimental design and should allow more reliable
normalization of RT-PCR data.
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