

www.roche-applied-science.com

Genotyping Concept for the LightCycler 480[®] System

Applications for the LightCycler® 480 System

- Gene Detection: detecting e.g. bacteria in sample material
- Gene Expression: analyzing expression level of gene of interest
- Genotyping: detecting known variants
- Gene Scanning: finding new variants

Genotyping by Real-time PCR

Current Technologies and Developments

Examples for genotyping of known mutations

- using HybProbe- or Simple Probe Probes (melting curves)
- using Hydrolysis Probes (end point detection)

How to find <u>new</u> mutations (e.g., SNPs, deletions, insertions) in specific regions of candidate genes?

High Resolution (Amplicon) Melting using a saturating
 DNA-binding dye and specific algorithms for data analysis.

Content

- Principles and advantages of melting-curve based genotyping with fluorescence-labeled probes
- Discrimination by allele specific PCR, end-point genotyping on the LightCycler® 480 System
- High-Resolution Melting for mutation scanning

Genotyping Technique using Melting Curves

Genotyping with HybProbe Probes

LightCycler® 480 Genotyping Software

- performs genotyping analysis on HybProbe or SimpleProbe based experiments containing a melting curve program subsequent to PCR.
- LightCycler® 480 Genotyping Software groups samples with similar melting profiles together and identifies each group as a genotype.
- To determine genotypes, the software analyzes the shapes of all the melting curves. It compares each individual melting curve profile to a standard, and then makes a "call".

LightCycler® 480 Genotyping Software

Roche

Results Screen

LightCycler® 480 Performance

High-Throughput SNP Analysis

Set A1-O23 **MDR1 C/T**

Set B1-P23 LPLH3 C/A

Set A2-O24 **ADD1 C/A**

Set B2-P24 **ADR1-C1 C/T**

LightCycler® Genotyping: Example *SNP with Three Different Alleles*

Template: Plasmid DNAs

Single Color: LC RED 640

LightCycler® 480 System Benefits for Genotyping

Melting curve principle:

- post-PCR, biophysical measurement, more robust than enzymatic assays.
- curve shapes and peaks more informative than PCR end-points.

Optimized for hybridization probes:

- cover several nearby SNPs in the same reaction
- resolve nearby SNPs, and identify unknown new allelic variants.

Broad range of specific filters for excitation and detection:

- easily set-up multiplex assays by combining colors and Tms
- Highly reproducible results on an instrument designed for automated workflows.

Content

- Principles and advantages of melting-curve based genotyping with fluorescence-labeled probes
- Discrimination by allele specific PCR, end-point genotyping on the LightCycler® 480 System
- High-Resolution Melting for mutation scanning

Allelic Discrimination

- Allelic discrimination is Genotyping by the use of Hydrolysis Probes for each homozygous type (wildtype and mutant)
- Multiplex approach with e.g., Fam- and Hex-labeled Hydrolysis Probes
- Mismatches between probe and target reduce efficiency of probe hybridization. The enzyme is more likely to replace mismatched probe without cleaving it (lower or no fluorescent signal)

Allele Specific PCR

LightCycler® 480 End-Point Genotyping

Analysis of Hydrolysis Probe Assays

- Excel worksheet ("TaxcelTool")
 available for analysis of
 LightCycler[®] 480 data (on request)
- Bridging the gap between launch of SW 1.5 with module for Hydrolysis Probe Genotyping

Create LightCycler® 480 Data for "TaxcelTool" Analysis

After PCR with Hydrolysis probes (run on LC480) perform an endpoint measurement by programming a short "Melting Curve" from 60-61°C.

Analyze and Export LightCycler® 480 Data for "TaxcelTool" Analysis

Open analysis "Tm Calling":

Settings for FAM data:

Filter Comb. 483-533 Color Comp. (On)

Settings for VIC/Hex data:

Filter Comb. 523-568 Color Comp. (On)

Export raw data (right mouse click into Melting Curves graph), save as XML format

18

Open LightCycler® 480 Data in Excel for "TaxcelTool" Analysis

On Excel:
Open FAM.xml and VIC.xml

"TaxcelTool" for the Analysis of LightCycler® 480 Data (1)

Import FAM and VIC excel sheets into "TaxcelTool". Click on Graph to visualize groups

20

"TaxcelTool" for the Analysis of LightCycler® 480 Data (2)

Click on Analysis to visualize the listed genotypes and to adjust angle settings

Content

- Principles and advantages of melting-curve based genotyping with fluorescence-labeled probes
- Discrimination by allele specific PCR, end-point genotyping on the LightCycler® 480 System
- High-Resolution Melting for mutation scanning

High-Resolution Melting Analysis

Introduction

- HRM is an extension of melting curve analysis
 - allowing to extract even more information (also unknown variants) out of melting curves at lower cost and with less effort
 - requiring special fluorophores, a high-performance instrument (block homogeneity, suitable filters, optical sensitivity and resolution) and special analysis algorithms.

Possible Applications

- Mutation Discovery and SNP Detection
- DNA methylation analysis
- DNA Mapping
- Species identification

• . . .

High-Resolution Melting Innovations and Prerequisites

- Precise Instrument to allow genotyping and/or mutation scanning of whole PCR products.
 - homogenous temperature profile and temperature control
 - high sensitivity optical system (light source and detection system)
- Novel intercalating dye to identify heteroduplex DNA
 - saturating, non-inhibitory dsDNA binding without redistribution during melting
- Software generating normalized and temperature shifted fluorescence difference plot instead of derivative melting curves revealing higher resolution of subtle changes in the melting behaviour of heteroduplexes

25

LightCycler® 480 System Instrumentation

 Optimized heating and cooling technology for increased speed and maximized temperature uniformity

 Optimized arrangement of optical components for homogeneous excitation and fluorescence detection

Mutation Detection using HRM

Saturating Dyes

heteroduplexes homoduplexes

Fluorescent ds-DNA specific dyes (e.g.,SYBR Green I)

- individual curves not sharp
- overlap is the same for homo- and heteroduplexes

VS

Saturating dye

- uniform, sharp signals
- only sequence but not dye makes a difference

Amplicon Melting

Roche

Principle of Gene Scanning by HRM

Heterozygote/Homozygote Distinction

Target mdr-1

mdr-1 SNP (C\rightarrowT), DNA of 60 independent blood donors

Detection dye: R27

Amplicon length: 247 bp

Mutation Detection using HRM

Roche

Finding Heterozygotes

- Amplicon Melting of homozygote samples (containing homoduplexes wt or mut) give very similar curve shapes.
- Amplicon Melting of heterozygote samples (containing homo <u>and</u> heteroduplexes) give curve shapes which are highly distinct.
- No identication of specific sequences (genotyping);
 Only differences between two genomes are detected.

High-Resolution Melting Curve Analysis Difference Plot

High-Resolution Melting

Example 1

Roche

Target: LPLH3

SNP G→T

Amplicon 164 bp

72 samples

Gene Scanning

Example 2

Target: MBL2

Screening for sequence variants in 384 unknown samples

Amplicon 219 bp

4 common and 2 rare groups of different sequences are found

In literature, 3 polymorphic sites are described, the most frequent alleles are the 4 variants:

- A) C/G/G
- B) C/A/G
- C) C/G/A
- D) T/G/G

Recommendations

- Prefer smaller amplicons for melting (up to 400bp)
- Use highly purified DNA for amplification
- Well established PCR amplification products
 - Bias free amplification (e.g., free of primer dimer, by-products)
 - Optimized conditions (optimized Roche-Master will be available)
 - Keep salt- and primer concentration as low as possible
- Check amplification curves
 - Similar curve shape
 - Similar plateau phase (same PCR product concentration)
- Accurate normalization of data

High-Resolution Melting with intercalating dye and unlabeled oligo specific for known mutation site

Simultaneous Genotyping and Scanning

Unlabeled Probe Genotyping and Amplicon Melting

High-Resolution Melting

Combined Unlabeled Probe and Amplicon Melting

Target: TNF α

Probe for SNP $C \rightarrow T$

Amplicon 136 bp

96 samples

1st Derivative

Normalization, Difference Plot

SNP Detection and Analysis

Roche

Two Combined Approaches

Benefits and Requirements

- Simple and flexible technology
 - More information, faster
 - No need for probe based assays
- Robust instrumentation
 - Lower maintenance requirements compared to e.g., to dHPLC
- Well established PCR amplification products
 - Bias free amplification (e.g., free of primer dimer, by-products)
 - Optimized conditions (optimized Roche-Master will be available)

Literature on High-Resolution Melting

- 1. von Ahsen, N. *Two for typing: homogeneous combined single-nucleotide polymorphism scanning and genotyping.* Clin Chem 51, 1761-1762 (2005).
- 2. Herrmann, M.G., Durtschi, J.D., Bromley, L.K., Wittwer, C.T. & Voelkerding, K.V. Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin Chem 52, 494-503 (2006).
- 3. Dujols V, Kusukawa N, McKinney JT, Dobrowolsky SF, Wittwer CT. *High-resolution melting analysis for scanning and genotyping., in Real Time PCR.* Tevfik D, ed., Taylor and Francis, Abingdon, 2006.
- 4. Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem. 2004;50:1748-54.
- 5. Reischl, U.: *Melting of the ribosomal RNA gene reveals bacterial species identity: a step toward a new rapid test in clinical microbiology.* Clin Chem 2006 (in print).

