

Influence of DNA polymerases on quantitative PCR results using TaqManTM probe format in the LightCyclerTM instrument

K-A. Kreuzer, A. Bohn, U. Lass, U. R. Peters and C. A. Schmidt*

Abteilung für Innere Medizin und Poliklinik m.S. Hämatologie und Onkologie, Campus Virchow-Klinikum, Medizinische Fakultät Charité der Humboldt-Universität zu Berlin, Berlin, Germany

(Received 8 November 1999, Accepted 8 December 1999)

Real-time fluorescence polymerase chain reaction (PCR) techniques are increasingly used to quantitate target sequences for diagnostic and research purposes. Currently, the so called TaqManTM probe chemistry is mostly used as fluorogenic system. This probe format is strictly dependent on the 5'-exonuclease activity of DNA polymerase as fragmentation of the probe during the reaction is essential for this assay. Based on our experience that dramatic differences in quantitative PCR results may be due to different DNA polymerases we performed a detailed comparison of 15 enzymes. We found that clear differences exist between polymerases of different manufacturers. Thus, three out of seven polymerases which were declared to posses 5'-exonuclease activity appeared to be completely unsuitable for this method while the remaining had significantly different reaction efficiencies. We conclude that different DNA polymerases may determine the entire analytical performance of TaqManTM assays suggesting that DNA polymerase testing is of special importance when this probe format is used.

KEYWORDS: real-time PCR, DNA polymerases, 5'-exonuclease activity, fluorescent probes.

INTRODUCTION

The recently introduced real-time fluorescence polymerase chain reaction (PCR) technologies (ABI PRISM 7700 SDSTM and LightCyclerTM) offer the quick and reliable quantitation of any target sequence.^{1,2} Thus, these new technologies appear to be very promising and may provide new insights in various pathological changes. However, conventional PCR conditions have to be modified for these methods such that fluorescence detection during the reaction is optimized. Among others, magnesium concentrations are thought to be critical for secondary structures of

the fluorescent probes and additional oligonucleotides must be considered in the reaction.³ In our opinion the TaqManTM probe chemistry is superior to other probe formats (e.g. HybProbesTM) as it is highly flexible and convenient to handle. The principle of this assay is a target specific probe which is labeled with a reporter and a quencher dye in a distance of a few base pairs within the probe sequence. As the DNA polymerase extends the primers the probe is hydrolysed through the 5′-exonuclease activity of the enzyme.⁴ Thus, reporter and quencher dyes are separated leading to a measurable increase of reporter fluorescence which is measured during the reaction.

^{*}Address to whom all correspondence should be addressed at: Abteilung für Innere Medizin und Poliklinik m.S. Hämatologie und Onkologie, Campus Virchow-Klinikum, Medizinische Fakultät Charité der Humboldt-Universität zu Berlin, Forum 4, 1.0310, Augustenburger Platz 1, 13353 Berlin, Germany. Tel: +49 30 450 53663; Fax: +49 30 450 53929; E-mail: christian.schmidt@charite.de

Considering this enzymatic probe fragmentation is the central event which leads to a fluorescence signal in this assav.

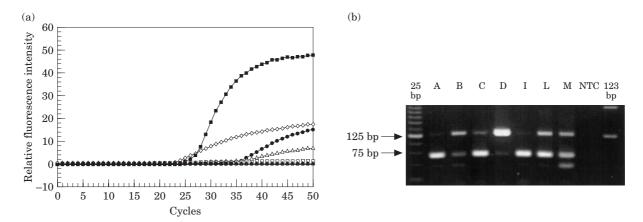
Currently, a great number of commercial DNA polymerases are available of which several are claimed to possess 5'-exonuclease activity. However, these enzymes may differ with regard to their individual polymerase and exonuclease efficiency. While it is well known that different enzymes have varying polymerase characteristics their 5'-exonuclease properties are not well studied. The aim of this work was to find an enzyme with both maximum polymerase and maximum 5'-exonuclease activity in order to reach maximum sensitivity in our real-time PCR assays.

MATERIALS AND METHODS

As target sequence we used chimeric bcr/abl fusion transcripts. Briefly, 10⁴ copies of a DNA standard preparation ranging from 10⁷ to 10⁰ was amplified in the LightCyclerTM (Boehringer Mannheim, Mannheim, Germany) and fluorescence measured using a target specific fluorescent probe (5'-AGCGGCTTCACT-GACCATGG). The probe was labelled with 6-carboxy-fluorescein phosphoramidite (FAM) at the 5' end and 5-carboxy-tetramethyl-rhodamine (TAMRA) was incorporated at nucleotide nine of the oligonucleotide. Initial denaturation (94°C, 10 min) was followed by 50 cycles of 94°C for 10 s 65°C 30 s.

A total of 15 different DNA polymerases were used: AmpliTaq[™] and AmpliTaq Gold[™] (Perkin Elmer, Foster City, USA), Gibco Taq DNA polymerase and Gibco PlatinumTM (Gibco BRL, Karlsruhe, Germany), VentTM and Deep VentTM (New England Biolabs, Beverley, USA), Taq DNA polymerase and Tfu DNA polymerase (Appligene Oncor, Ilkirch, France), Qiagen Taq DNA polymerase (Qiagen, Hilden, Germany) InViTAQTM, DeltaPolTM and CombiPolTM DNA polymerases (In-ViTek, Berlin, Germany), BiothermTM and Klen- $Therm^{\mathsf{TM}}$ DNA polymerases (Rapidozym, Luckenwalde, Germany) and Taq DNA polymerase (Boehringer Mannheim, Mannheim, Germany). The 20 μl reaction mix contained 10 × PCR buffer, 4·5 mm MgCl₂, 0.8 m_M dNTP (Gibco BRL, Karlsruhe, Germany), 30 μg bovine serum albumine (BSA), 0.5 mm of each primer, $1\,\mu\text{M}$ TaqMan TM probe and $1\cdot25\,\text{u}$ DNA polymerase. For each master mix corresponding reagents (buffer, magnesium, additives) of the respective manufacturer were used. Each experiment was performed in triplicates.

RESULTS


In Table 1 investigated polymerases are listed with regard to the 5'-exonuclease activity according to the manufacturers information. Fig. 1a shows reporter fluorescence curves measured by the LightCyclerTM instrument using seven different DNA polymerases with suggested 5'-exonuclease activity (DNA polymerases coded as A-O). As can be seen from the diagram fluorescence intensity generated by different polymerases varied substantially. TagManTM PCR is defined to become positive when fluorescence of a given sample exceeds significantly those of the background. The time point of the reaction when this is the case is marked as threshold cycle (Ct). Once a calibration curve is generated by correlation of known template concentrations against the respective Ct values individual template number is calculated by considering the Ct of an unknown sample. Thus, the Ct is critical for the determination of individual quantitative PCR results. As illustrated in the figure, Ct values differed also greatly from enzyme to enzyme. In Fig. 1b corresponding agarose gel analysis is shown with a target amplicon size of 127 bp. While all polymerases yielded comparable band intensities when fluorescent probes were omitted, as expected intensities of the bands reflect exactly the results obtained with the LightCycler™. Inversely, primer dimerization increased when amplification was reduced or absent.

DISCUSSION

We could clearly show that different commercially available DNA polymerases yield varying fluorescence in real-time PCR using the TaqManTM probe format. It is of interest that some enzymes for which 5'-exonuclease activity was claimed did not produce any fluorescence signal in our assay while all enzymes without this declared activity did not produce any fluorescence. It is surprising that only one polymerase (D) showed a sigmoid amplification curve as expected for the exponential reaction kinetics. In contrast, four other enzymes exhibited nearby linear amplification curves suggesting that reactions using these DNA polymerases do not follow theoretic PCR kinetics. Gel analysis confirmed that not only fluorescence generation is affected by different polymerases but amplification may also vary dependent on the used enzyme with maximum amplification by using polymerase D. As without fluorescent probes all polymerases yielded comparable amplification bands this could be explained by incomplete primer extension when the probe is not sufficiently cleaved from the

Table 1. Fifteen DNA polymerases tested with regard to their 5'-exonuclease activity using TaqManTM chemistry in the LightCyclerTM

DNA polymerase	5'-exonuclease activity (manufacturers declarations)	
AmpliTaq®,	Yes	
Perkin Elmer	V	
AmpliTaq Gold®, Perkin Flmer	Yes	
	V	
Taq DNA Polymerase,	Yes	
Gibco BRL	Yes	
Platinum® Taq DNA Polymerase, Gibco BRL	res	
Vent _R ®,		No
New England Biolabs		NO
Deep Vent _R ®,		No
New England Biolabs		140
Tag DNA Polymerase,		No
Appligene Oncor		140
Tfu DNA Polymerase,		No
Appligene Oncor		
Qiagen Taq DNA Polymerase,	Yes	
Qiagen		
InVITAQ™,		No
InViTek		
DeltaPol TM (Exo-) DNA Polymerase,		No
InViTek		
CombiPol [™] ,		No
InViTek		
KlenTherm,	Yes	
Rapidozym		
BioTherm,	Yes	
Rapidozym		
Taq DNA Polymerase,		No
Boehringer Mannheim		

Fig. 1. (a) Fluorescence plot of the bcr/abl target sequence obtained by the LightCycler when using TaqManTM probe format and seven DNA polymerases with suggested 5'-exonuclease activity. (b) Conventional agarose gel electrophoresis of the PCR products after fluorescence PCR. DNA polymerase A, (-\$\infty\$—); DNA polymerase B, (-\$\infty\$—); DNA polymerase B, (-\$\infty\$—); DNA polymerase L, (-\$\infty\$—); DNA polymerase L, (-\$\infty\$—); DNA polymerase M, (-\$\infty\$—).

target strand by the exonuclease activity of the DNA polymerase. These altered reactions may lead to the different Ct values which again directly influence the sensitivity of the assay. In summary, we found that only one DNA polymerase fulfilled equally polymerase and 5'-exonuclease characteristics necessary for real time PCR using the TaqManTM probe format in our hands.

REFERENCES

1. Livak, K. J., Flood, J. A., Marmaro, J., Giusti, W. & Deetz, K. (1995). Oligonucleotides with fluorescent

- dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. *PCR Methods and Applications* **4**, 357–62.
- 2. Wittwer, C. T., Ririe, K. M., Andrew, R. V., David, D. A., Gundry, R. A. & Balis, U. J. (1997). The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. *Biotechniques* **22**, 176–81.
- 3. Rychlik, W. (1995). Priming efficiency in PCR. *Biotechniques* **23**, 714–20.
- Lyamichev, V., Brow, M. A. & Dahlberg, E. (1993). Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. *Science* 260, 778–83