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ABSTRACT

BACKGROUND
The biomedical community is developing new methods of data analysis to more 

efficiently process the massive data sets produced by microarray experiments. 

Systematic and global mathematical approaches that can be readily applie d to a 

large number of experimental designs become fundamental to correctly handle the 

otherwise overwhelming data sets. 

RESULTS
The gene selection model presented herein is based on the observation that: (1) 

variance of gene expression is a function of absolute expression; (2) one can model 

this relationship in order to set an appropriate lower fold change limit of significance; 

and (3) this relationship defines a function that can be used to select differentially 

expressed genes.  The model first evalua tes fold change (FC) across the entire 

range of absolute expression levels for any number of experimental conditions.  

Genes are systematically binned, and those genes within the top X% of highest FCs 

for each bin are evaluated both with and without the us e of replicates.  A function is 

fitted through the top X% of each bin, thereby defining a limit fold change.  All genes 

selected by the 5% FC model lie above measurement variability using a within 

standard deviation (SDwithin) confidence level of 99.9%.  R eal time-PCR (RT-PCR) 

analysis demonstrated 85.7% concordance with microarray data selected by the limit 

function. 

CONCLUSION
The FC model can confidently select differentially expressed genes as corroborated 

by variance data and RT-PCR.  The simplicity of the overall process permits selecting 

model limits that best describe experimental data by extracting information on gene 

expression patterns across the range of expression levels.  Genes selected by this 



process can be consistently compared between exp eriments and enables the user to 

globally extract information with a high degree of confidence.



BACKGROUND
The complete sequencing of several genomes, including that of the human, 

has signaled the beginning of a new era in which scientists are becoming 

increasingly interested in functional genomics; that is, uncovering both the functional 

roles of different genes, and how these genes interact with, and/or influence, each 

other.  Increasingly, this question is being addressed through the simultaneous 

analysis of hundreds to thousands of unique genetic elements with microarrays.  

Already, analytical strategies have subdivided into distinct 'omic' domains, such as 

genomics, proteomics, and metabolomics.  This enables researchers to examine not 

only genetic elements, but also the corresponding proteins and metabolites derived 

from these genes.  All 'omic' technologies share the need for fresh, innovative looks 

at data analysis.  To date, transcriptomics is the most widely studied molecular 

approach, enabling researchers to examine subtle differences in thousands of mRNA 

levels between experimental samples, medical biopsies, etc.  Although mRNA is not 

the end product of a gene, the transcription of a gene is both critical and highly 

regulated, thereby providing an ideal point of investigation [1,2].  Development of 

microarrays has permitted global measurement of gene expression at the transcript 

level and provided a glimpse into the coordinated control and interactions between 

genes.

Presently, two technologies dominate the field of high -density microarrays: 

cDNA arrays and oligonucleotide arrays.  The cDNA array has a long history of 

development [3] stemming from immunodiagnostic work in the 1980s; however, it has 

been most widely developed in recent years by Stanford University (California) 

researchers depositing cDNA tags onto glass slides, or chips, with precise robotic 

printers [4].  Labeled cDNA fragments are then hybridized to the tags on the chip, 

scanned, and differences in mRNA between samples identified and visualized using 

a variation of the red/green matrix originally introduced by Eisen and colleagues [5].  



The light-generated oligonucleotide array, developed by Affymetrix, Inc. (Santa Clara, 

CA), involves synthesizing short 25-mer oligonucleotide probes directly onto a glass 

slide using photolithographic masks [6,7].  Sample processing includes the production 

of labeled cRNA, hybridization to a microarray, and quantific ation of the obtained 

signal after laser scanning.  Regardless of the array used, the output can be readily 

transferred to commercially available data analysis programs for the selection and 

clustering of significantly modified genes.

Differentially expressed genes will be defined herein as gene data determined 

to be statistical outliers from some standard state, and which can not be ascribed to 

chance or natural variabilty.  Various creative techniques have been proposed and 

implemented for the selection of differentially expressed genes; however, none have 

yet gained widespread acceptance for microarray analysis.  Despite this, there 

remains a great impulse to develop new data analysis techniques, partly driven by 

the obvious need to move beyond setting si mple fold change cut-offs which are out of 

context with the rest of the experimental and biological data at hand [8-11].  This has 

been the case for many studies, where the selection of differential gene expression is 

performed through a simple fold change cut-off, typically between 1.8 and 3.0.  There 

is an inherent problem with this selection criterion, as genes of low absolute 

expression have a greater inherent error in their measured levels. These genes will 

then tend to numerically meet any given fold change cut -off even if the gene is not 

truly differentially expressed.  The inverse also holds true, where highly expressed 

genes, having less error in their measured levels, may not meet an arbitrary fold -

change cut-off of 2.0 even when t hey are truly differentially expressed [12].  

Therefore, selecting differentially regulated genes based only on a single fold change 

across the entire range of experimental data preferentially selects lowly expressed 

genes [8].  This commonly used approach does not accommodate for background

noise, variability, non-specific binding, or low copy numbers - characteristics typical of 



microarray data which may not be homogeneously distributed.  Other approaches 

entail the use of  standard statistical measures such as a student's t-test or ANOVA 

for every individual gene.  However, due to the cost of repeating microarray 

experiments, the number of replicates usually remains low, leading to inaccurate 

estimates of variance [8].  Furthermore, due to the low number of replicates, the 

power of these "gene-by-gene" statistical tests to differentiate between regulated and 

non-regulated genes also remains very low. 

The present article describes a model that considers both  expression levels and 

fold changes for the identification of significant differentially expressed genes.  This 

simple model allows the experimenter to estimate the relationship between these two 

parameters in the absence of large numbers of experimental r eplicates, where the 

inherent error of measures cannot be accurately estimated.  Subsequently, gene 

transcripts determined to be outliers from the trend can be considered differentially 

expressed genes.  An added strength to the model lies in its ease of a pplication to 

any data set.  This model should be considered a progressive and cyclical process, 

where the data analyst can quickly and globally identify a list of potentially 

differentially regulated genes with confidence, based on the inherent qualities of the 

data set under evaluation.

The model presented herein was developed with a data set from a nutritional 

experiment in a mouse model using Affymetrix Mu11K chips, where the effects of 

four diets were compared in a number of organs (pool of five mice f or each sample in 

each organ): (1) control diet A in duplicate from the same pool; (2) diet B; (3) diet C; 

and (4) diet D.  Details of the dietary treatments will be reported elsewhere.  The 

present article will take only the data from the liver as an exam ple for the 

development of a gene selection model.  The model was validated by real -time 

polymerase chain reaction (RT-PCR) and indicates good concordance between the 

two experimental techniques.



RESULTS AND DISCUSSI ON

SELECTION OF DIFFERENTIALLY REGULATED GENES & DATA ANALYSIS

The method developed herein includes: (A) determination of the upper X% of 

highest fold changes within narrow bins of absolute expression levels in order to 

generate a limit fold change (LFC) function; and (B) subsequent ranking of genes by 

a combined fold change/absolute expression calculation.   The following discussions 

describe the development of the model within the context of our nutritional study; 

however, a generic protocol can be found in the Materials and Methods section.

(A) SELECTION OF THE UPPE R X% OF HIGHEST FOLD CHAN GES WITHIN BINNED AB SOLUTE 
EXPRESSION LEVELS

The principal parameter for gene expression data stemming from a typical 

Affymetrix experiment is the average difference intensity (ADI), which is a 

representation of the absolute expression of a gene. As indicated in the literature, it is 

common practice to establish a minimal expression threshold below which data are 

considered to be noise. In the case of Affymetrix data, it is often necessary to discard 

minimal and negative ADIs, as these data are both biologically and mathematically 

difficult to interpret.

A number of previous reports have used an ADI threshold ( At) value of 20 in 

the standard Affymetrix range [13-16], i.e. probe sets with ADI's of less than 20 would 

either be rejected or set to 20 as meaningful differences in gene expression can 

purportedly be evaluated above this level.  Although empirically supported, an At of 

20 is essentially an arbitrary selection and not all groups sele ct the same threshold 

value. The exact setting of this lower At is not inherent to the LFC modeling process, 

and the reader is encouraged to set the At value based on additional criteria, such as 

that previously published by Gerhold et al. [17] and Dieckgraefe et al. [18]. However, 

an At of 20 will be used in the present work, for which the selection of differentially 

expressed genes in the context of ADI dependent variance is the central focus. 

Therefore, all ADI's less than 20 were set to 20 and any probe set with a value of 20 



across all dietary treatments were discarded. After eliminating the probe sets which 

met these criteria there remained 9391 genes out of the original 13179 genes 

represented on the Mu11K GeneChip. 

An additional parameter, highest fold change (HFC), was then applied to these 

remaining genes. HFC is defined as: 

where A, B, C, and D represent the individual microarray results for each gene. The 

HFC is inherently a ratio metric of the maximum chang e in measured gene 

expression between any combination of experimental treatments. The present 

experiment has four dietary conditions with microarray data; however, it should be 

noted that the HFC equation could be expanded to any number of conditions or 

experimental treatments.

The determination of HFC is highly influenced by absolute expression, and 

trends can be readily observed in our data set where HFC is negatively correlated 

with absolute expression (Figure 1a). For example, with absolute expression v alues 

greater than 5000 it is of low probability to observe an HFC greater than 2.  However, 

with absolute expression values near 50, an HFC of greater than 2 is readily seen. 

Although not shown in Figure 1a, this trend could be observed for any pair or tr iplet of 

experimental comparison in the current data set, i.e. AB, AC, AD, BC, BD, ABC, 

BCD. It has also been observed across multiple experiments examined in our 

laboratory (data not shown). This consistancy can be explained by the fact that there 

are very few genes out of the entire transcriptome which are differentially expressed 

due to treatment. Therefore, most measured gene transcripts display a typical 

coefficient of variation independent of treatment. The few genes which are 

differentially expressed do not unduly affect the overall trend. Therefore, the trend 

max ADI (A,B,C,D)
min ADI (A,B,C,D)

HFC =



lends itself to characterization and may be used as a metric for determining 

differential gene expression across multiple experiments.

This empirically implies that natural variation, expressed here as HFC, tends to 

be much greater at low expression levels.  This concept is supported in the literature 

[12] and questions the appropriateness of using a linear fold change cut -off in a 

system characterized by heterogenous variance.  

As stated previously, the selection of differentially expressed genes is 

essentially a search for outliers, i.e. gene data lying outside some standard 

distribution of differences relative to a control state, and which cannot be ascribed to 

chance or natural variabilty.  To determine those genes which are outliers, it is 

necessary to measure either the variability of the system or to make valid 

assumptions regarding the distribution of variability.  In the present model we assume 

that: (1) as mentioned above, variability in the measurement of gene expression is 

related to the ADI; and (2) if a broad sampling of the transcriptome is measured, only 

a small number of genes will actually be outliers even in the harshest of experimental 

conditions.  Assumption (1) is a fairly general analytical concept, i.e. the closer data 

is to the measurement threshold, the higher the variability is in that measurement 

[12,19].  Assumption (2) appears to be empiricaly valid when surveying the literature 

for high-density microarray experiments which evaluate severe biological events, 

from caloric restriction [20,21] to apoptosis [22,23].  In these experiments [20-23], 

regardless of the gene selection method used , less than 5% of the total number of 

genes probed were differentially regulated.  Therefore, to develop the present model 

of gene selection, the validity of selecting outliers was evaluated for a range of highly 

variable genes using the top 5% as a benchm ark.  Model trends were then examined 

from 1% to 10%. 

The model was developed by first binning gene expression data into tight 

classes across the entire range of absolute expression values, where genes with an 



equal absolute expression value were randomly  ordered, and then selecting the 

upper 5% of HFC values for further consideration.  Binning was carried out to divide 

the entire range of absolute expression values into bins containing an equal number, 

m, of genes, where m = 200.  Therefore, bin widths (A DI) were not necessarily equal, 

yet the number of genes contained in each bin was equivalent.  For the first round of 

analysis, the upper 5%, or 95 th percentile, of HFC genes in each bin were selected 

for further consideration (Figure 1a).  It was possible  to search separately for the 5% 

of genes with the greatest HFCs in each class; however, in order to simplify the 

overall selection, we plotted the relationship between absolute expression, defined as 

min ADI (A,B,C,D), and HFC, in order to set the LFC fun ction.  Herein, the min ADI 

(A,B,C,D) will simply be referred to as min ADI.  This relationship was then modeled 

using a simple equation of the form LFC=a+(b/min ADI), which is fitted to the 95 th

percentile of each bin (Figure 1a) to produce the LFC curve that best models the 

expression data.  This modeled LFC curve (5% LFC model=1.74+91.55/min ADI) fit 

the data well (R2=0.98) and further analysis indicated the residuals were randomly 

distributed (data not shown).  The equation for the line of best fit cont ains two 

parameters that have various repercussions on gene selection, both of which can be 

defined in commercially available software using common "solve" functions ( e.g. 

Microsoft Excel).  First, a sets the asymptote, which corresponds to the minimum 

HFC value that can be observed at any given ADI.  Second, b raises/lowers the limit 

function at a given ADI, and is therefore highly influenced by this latter value.  For 

example, the smaller the ADI the greater the LFC, and vice versa.  Figure 1b shows 

that as the selection criteria becomes more strict (top 5% � 1% of genes), the curve 

shifts (1% LFC model=2.43+166.12/min ADI) and becomes more restrictive in the 

selection of differential genes, i.e. at any given absolute expression level a higher 

fold change must be observed for a gene to be considered differentially expressed.  

The opposite is true when the selection criteria becomes less strict (top 5% � 10% of 



genes), where the curve shifts (10% LFC model=1.59+69.47/min ADI) and results in 

a more permissive selection of differential genes.

Using the aforementioned equations the selection of genes for further 

consideration becomes simple and 'global' ( i.e. across the entire range of expression 

levels); where a gene is selected with the HFC approach if max ADI /min ADI > 

a+(b/min ADI).  After applying the 10% LFC gene filter, 869 genes remained in the 

list out of the 9391 candidate genes selected from the original 13179 genes on the 

GeneChip.  When interested in the top 5% and 1% of significant genes, the total 

number of genes that meet the LFC requirements is 471 and 82, respectively.

Lastly it should be noted that the LFC, i.e. the modeled trend of HFC vs. min 

ADI, is based on binned data of hundreds of genes across multiple conditions leading 

to a highly powerful characterization of a given threshold.  In other words, there is a 

large amount of data available in order to accurately characterize the trend.  The 

same argument holds for the generation of a modeled confidence interval based on 

low numbers of replicates, as will be described below.  This is in contrast to the 

relatively low statistical power of conventional "gene -by-gene" tests such as the t-test 

or ANOVA, often used for the selection of differentially expressed genes [8].

(B) A SSIGNMENT OF GENE RANK

Following gene selection, a rank of 'importance' or 'interest level' was assigned 

to each selected gene.  It should be noted that the LFC is not dependent on the rank 

calculation; rather rank simply lends relative 'importance' to selecte d genes by 

incorporating both the magnitude of fold change and absolute expression values. The 

rank number (RN) for each gene was determined by first calculating a rank value 

(RV), which can be defined as: RV = HFC * (max ADI – min ADI).  After calculation  of 

RV, gene lists were sorted and then assigned a simple RN of 1,2,3,4…, where a 

gene with a RN of 1 corresponds to the gene with the highest RV.  The RV is an 

arbitrary value that simply lends importance to selected genes with both high fold 



changes and high differences in absolute expression.  Both RV and RN aid in the 

discussion of differential gene effects by adding the concept of relative weight or 

importance amongst selected genes.  This concept aids in the choice of genes for 

validation or follow-up studies, as detailed below.

(C) MODEL VALIDATION

Validation of the LFC model via characterization of measurement variability

Hess and colleagues have recently examined the concept that variability and 

absolute expression are related; however, they examin ed only the variability of 

replicate spots on a single slide [24].  Herein, we extended this concept to examine 

the variability between genes on different microarrays.  Measurement variance was 

examined following the development of the LFC  model, and was therefore used 

simply as a confirmation of this model.  To further understand the nature of 

measurement variability within the current study, duplicate Mu11K Affymetrix 

microarrays for the controls were examined (see Materials and Methods s ection).  A 

pooled RNA sample from mice ( n=5) fed the control diet was hybridized to two 

different chips, and the data was analyzed to characterize measurement variability.  It 

was apparent from the trend that as absolute expression levels (ADI) increase, the 

coefficient of variation (CV= SD/MAE) decreases.  The trendline was calculated as 

detailed in the Materials and Methods section.  This trendline was overlayed on the 

entire data set, in addition to the 5% LFC selected data (shown in red), in Figure 1c.

By overlaying the trendline of the within variability data on those genes determined to 

be significantly regulated by the LFC model, the CV upper confidence limit for these 

selected genes had a p value ≤ 0.001.  Thus, the 5% LFC -selected data lies outside 

the 99.9% confidence interval surrounding measurement variability, reinforcing the 

validity of the results.

Real-time polymerase chain reaction (RT -PCR)



The results obtained from a microarray experiment are influenced by each 

step in the experimental procedure, from array manufacturing to sample preparation 

and application to image analysis [25].  The preparation of the cRNA sample is highly 

correlated to the efficiency of the reverse transcription step, where reagents and 

enzymes alike can influence the reaction outcome.  These factors affect the 

representation of transcripts in the cRNA sample, necessitating the need for 

validations by complementary techniques.  Analyses by northern blot and RNAse 

protection assays are commonly reported; however, the emerging 'gold-standard' 

validation technique is RT-PCR [26].  Microarrays tend to have a low dynamic range, 

which can lead to small yet significant under -representations of fold changes in gene 

expression [27].  As RT-PCR has a greater dynamic range, it is often used to validate 

the observed trends rather than duplicate the fold changes obtained by chip 

experiments [26,28,29].

Having chosen genes that lie across the range of RN, and therefor e the range 

of model selection criteria, RT-PCR was performed in triplicate for each experimental 

condition (Diet A,B,C,D) using the same pooled stocks of liver RNA (5 mice per 

experiment).  Genes were compared to the endogenous controls β-actin and 

GAPDH, which did not significantly change across the dietary treatments.  As 

determined by our LFC selection model, the GeneChip microarrays indicated no 

significant differences amongst the 4 diets for either GAPDH or β-actin.  Subsequent 

confirmation that both GAPDH and β -actin did not change was provided by RT -PCR, 

where a simple student's t-test with a predefined nominal α level of 0.05 indicated no 

significant differences between the experimental diets (B,C,D) and the control diet A.  

RT-PCR provided a means to confirm the effects of the 3 dietary treatments on 9 

genes (Table 1) and the concordance between these 27 microarray and RT -PCR 

results was examined.  Perfect concordance was not to be expected due to the 

inherent differences in sensitivity and dynamic range between the two techniques.  



However, a good overall concordance of 77.7% for differential gene expression was 

observed, i.e. the fold change for a given gene seen by microarray was directionally 

consistent with that seen by RT -PCR, regardless whether the results were significant 

by either the 5% LFC model (for microarray data) or a student's T -test (for RT-PCR 

data).  When examining only those genes considered significantly changed by RT -

PCR (α=0.05, starred values in Table 1), concordance increases to 85.7%. 

Therefore, the value of 85.7% indicates the overall concordance between 

significantly changed genes seen by RT -PCR and those microarray pairwise 

comparisons (treatment vs. control) that meet the LFC model criteria (§ values in 

Table 1).

What is noticeable through the color scheme (Table 1) is genes with high RN 

(low RV) have relatively less concordance between the two techniques; where red 

indicates no concordance and blue indicates only one or two (out of three) of the 

results agreed.  However, the majority of genes are colored in green, indicating 

perfect directional concordance.  When specifically examining fatty acid synthase 

(FAS), a highly expressed gene, microarray fold changes of less than 2 can be 

corroborated between the two experimental techniques, reinforcing the strength of 

this fold change model.  Furthermore, it is clear from the RT -PCR data that at very 

low expression levels, high fold changes are still problematic to verify and remain 

questionable.  The present model takes this into  account by raising the criteria 

appropriately at the low expression range, i.e. a higher fold change at low expression 

levels is required for a gene to be considered differentially expressed.

As the selection criteria with microarray data was that the HFC  must be 

greater than the LFC model limits, the expectation was that the LFC function could 

be validated by RT-PCR (underlined values in Table 1 indicate HFC for each gene).  

This is predominantly the case across the full dynamic range of data selected by the 

model (77.7% / 85.7 % concordance), except for very lowly expressed genes such as 



the RAS oncogene.  For genes with a slightly lower RN (higher RV), such as ABC1 

member 7, some concordance is seen, indicating confidence is gaining as RV 

increases.  For genes with an RN lower than 130 (RV > 1156; e.g. USF-2) 

concordance quickly approaches 100%, indicating high confidence when discussing 

gene trends or individual gene results.  These results reinforce the concept that RN is 

correlated with confidence and validity when discussing the gene set produced by the 

LFC model. 

Interestingly, one might expect that genes with an RN lower then 130 would 

be concentrated only at higher expression levels; however, when the spread of 

genes with an RN between 1 -130 were examined, these genes were found to lie 

across the entire range of absolute expressions (data not shown).  This indicates that 

a 5% LFC model is confidently selecting differentially regulated genes across the full 

range of absolute expression. Therefore, t he 5% LFC model appears to be an 

appropriate selection criteria for the present experimental data set; however, the fold 

change percentage could easily be varied to meet other acceptable levels of risk, as 

is done with conventional hypothesis testing ( e.g. α-, p-, and χ2-values). The X% 

selection criteria should then be re -evaluated for other experimental data sets in 

relation to the variance and validation data at hand.

CONCLUSION
The analysis of microarray data is a developing field of study aimed at enab ling 

the biomedical community to cope with the waves of large microarray data sets.  

Already, an evolution can be observed with respect to the methods for selecting 

significantly changed genes.  Researchers are moving away from simple fold change 

cut-offs and incorporating the use of robust statistical concepts.  The conclusion that 

highly expressed genes will rarely have a 2 -fold change in mRNA levels and that 

lowly expressed genes will commonly have a greater than 2 -fold change led to the 

development of a model that would accommodate for this real biological 



characteristic of gene expression measurements.  The fold change model presented 

in this paper considers both the absolute expression level and fold change of every 

gene across the entire range of obse rved absolute expressions.  In addition, the 

concept of increased variation in lowly expressed genes is incorporated into the 

selection model through the higher fold change requirements for differential gene 

selection at low expression levels.  Following g ene selection using an initial criterion 

of X%, gene rank was introduced as a basis for choosing genes to validate the 

model. Therefore, a limited but judicious choice of model parameters to select genes 

across a broad range of gene rank can then be used t o reset the X% in order to 

correspond with the data at hand (Figure 2).  The variance data characterizing 

measurement variability supports the selection model, indicating that selected genes 

lie outside measurement variability at very high confidence limit s (> 99.9% CL).  

Further validation of this model in the current data set by RT -PCR confirmed these 

relationships, reinforcing that genes with fold changes even less than 1.8 can be 

measured, assuming adequate absolute expression levels.  This demonstrates  that 

biological changes in sample concentration of mRNA, even at low fold change levels, 

can be confidently determined.

In summary, the X% LFC model enables one to define experiment specific 

selection stringency while maintaining simplicity and ensuring g lobal coverage for the 

detection of differential gene selection.



MATERIALS & METHODS

MICE AND FEEDING COND ITIONS: 
Mice were male Rj:NMRI mice from Elevage Janvier, Le Genest -Saint-Isle France, weighing 

10-11 g at delivery and 33 -51 grams on day 42, were  housed 10 per cage.  Mice received ad 

libitum quantities of bottled distilled water and purified powdered diets (7.5 g/mouse) in 

ceramic cups (10/group) for 42 d.  Experimental diets will be described in detail in a 

biological follow up publication.

DISSECTION OF MICE:
After administration of the aforementioned diets to 10 mice per group, 5 mice were randomly 

selected for inclusion in the gene expression analysis experiment.  Organs were dissected 

according to standard protocols, then cut into 100 -150 mg subsections, flash frozen in liquid 

nitrogen, and stored at –80 °C until gene expression analysis. 

NUCLEIC ACID PREPARATION:
Tissue from each organ was extracted from 5 individual mice and extracted separately using 

Qiagen RNeasy mini-kits (Basel, Switzerland) according to manufacturer's instructions with 

one exception: During extractions, all RNeasy columns were impregnated with DNase I 

(Roche, Basel, Switzerland) to remove possible genomic DNA contamination.  After 

extraction, equal amounts of material were pooled to obtain 10 µg total RNA per dietary 

group.  RNA samples were quantified with the RiboGreen RNA Quantification Kit according 

to  manufacturer's instructions (Molecular Probes, Eugene Oregon), and then analyzed via 

agarose gel electrophoresis for intact 18 and 28s rRNA.  All samples included in the study 

were judged to contain high-quality RNA in sufficient amounts for hybridization.  

GENE EXPRESSION ANALYSIS USING THE MURINE 11K GENECHIP:

cRNA preparation 

Total RNA (15 µg) was used as starting material for all samples.  In all cases, a “test chip” 

provided by the manufacturer  was run prior to using the Murine 11k GeneChip.  In each 

case this confirmed that sufficient high quality RNA was present to detect gene expression in 

the various tissue samples.  The first and second strand cDNA synthesis was perform ed 

using the SuperScript Choice System (Life Technologies) according to manufacturer's 

instructions, but using oligo-dT primer containing a T7 RNA polymerase binding site.  



Labeled cRNA was prepared using the MEGAscript, In Vitro Transcription kit (Ambion).  

Biotin labeled CTP and UTP (Enzo) was used together with unlabeled NTP´s in the reaction.  

Following the in vitro transcription reaction, unincorporated nucleotides were removed using 

RNeasy columns (Qiagen). 

Array hybridization and scanning 

cRNA (10 µg) was fragmented at 94 °C for 35 min in buffer containing 40 mM/L Tris -acetate 

pH 8.1, 100 mM/L KOAc, 30 mM/L MgOAc.  Prior to hybridization, fragmented cRNA in a 

6xSSPE-T hybridization buffer (1 M/L NaCl, 10 mM Tris pH 7.6, 0.005% Triton), was heated 

to 95 °C for 5 min, cooled to 40 °C, and then loaded onto the Affymetrix probe array 

cartridge.  The probe array was incubated for 16h at 40 °C at 60 rpm.  The probe array was 

washed 10x in 6xSSPE-T at 25 °C followed by 4 washes in 0.5xSSPE -T at 50 °C.  The 

biotinylated cRNA was stained with a streptavidin -phycoerythrin conjugate, 10 g/ml 

(Molecular Probes) in 6xSSPE-T for 30 min at 25 °C followed by 10 washes in 6xSSPE -T at 

25 °C.  The probe arrays were scanned at 560 nm using a confocal laser -scanning 

microscope (made for Affymetrix by Hewlett -Packard).  Readings from the quantitative 

scanning were analyzed with Affymetrix Gene Expression Analysis Software.

A STEP-BY-STEP METHOD TO APPLY  THE LFC MODEL TO AN EXPERIME NTAL DATA SET :

The LFC-model follows a three-step approach. This approach is discussed below as 

a general protocol and illustrated with the current data set. 

1. Data handling and 2 -dimensional visualization

Overall, the values of all genes are compared across any number ( p) of experimental 

conditions. The absolute expression value of the k-th gene for the j-th treatment is coded Zkj. 

When considering any given gene, the following data -handling rules are applied:

• All values below an ADI threshold ( At) are set to At.

• If the values for gene k are At for all p treatments, the gene is defined as not expressed 

and isn't considered further.

• The absolute expression value for gene k is defined as min(Zk1, …, Zkp).

• The highest fold change (HFC) of gene k is defined as the following:



eqn. 1

When visualizing all genes on a bivariate plot according to absolute expression and fold 

change, one obtains a data distribution similar to that of Figure 1a.

2. Modeling a discrete limit fold change model

The goal is to select the upper X% of genes with highest fold cha nge across the entire 

range of expression levels. Therefore, the following rules are applied:

• Genes are ordered according to their absolute expression value min(Zk1,…, Zkp), where 

equally expressed genes are randomly ordered.

• The overall expression range is divided into bins of different width, but containing an 

equal number m of genes.

• In each bin, the (1-X)- percentile fold change corresponding to a fold change that is 

exceeded by X% of genes in the bin is determined. For X% between 1% and 10%, 

m=200 appears to be suitable.

When visualizing the (1-X)-percentile fold change in each bin, one obtains a data distribution 

similar to that seen in Figure 1a.

3. Modeling a continuous limit fold change (LFC) model

A continuous model is derived from the discrete one  by relating the mean 

expressions of each bin with the corresponding (1 -X)-limit fold change, using a least squares 

fit of the equation:

(1-X)-LFC = a + b/Z (minimum expression)

This equation appears to fit the data very well and, the interpretation of the  parameters (a

and b) is straightforward:

• Parameter a represents the asymptote of the curve. For very large expressions, the (1 -

X)-limit fold change tends to be equal to parameter a.

• Parameter b is proportional to the difference between the (1 -X)- limit fold change of small 

and high expressions.

max(Z

k1

,…,Z

kp

)

min(Z

k1

,…,Z

kp

)

HFC =



When visualizing this continuous limit fold change model, one obtains a curve similar to that 

observed in Figure 1a.  In addition, increasing the (1 -X)-percentile fold change shifts the 

curve up the y-axis and results in an increased stringency for gene selection, i.e. fewer 

genes meet the LFC requirement (Figure 1b).

Validation by Coefficient of Variance 

For experiments that are performed without replicates, the LFC -model selects genes 

with the highest between-treatment variability (previously defined as fold change) at any 

expression level. If replicates are available, the inherent error of measures, the within -

treatment variability, can be estimated.  Therefore, it becomes possible to select the genes 

with the highest ratio of between-treatment-variability / within-treatment-variability.

In the data set that was used for illustrating the development of the LFC -model, 

duplicate measures were available for one of the four treatments. The within -treatment-

variability appears to be highly dependent of the expression level of the gene, confirming the 

findings of Hess et al. [24].

In order to estimate the CV without taking into account extreme values of the duplicate 

we used a robust estimator, represen ted by the following equation:

eqn. 2

where the χinverse function returns the inverse of the one -tailed probability of the χ-squared 

distribution.

Applying the CV derived from replicate sample data ( eqn. 2) to the quadruplicate diet 

data enabled the calculation of the CV upper confidence level (by bins of absolute 

expression level) using the following equation: 

eqn. 3
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where the χinverse function returns the inverse of the one -tailed probability of the χ-squared 

distribution.

Eqn. 3 allows one to identify genes with a variance above measurement variability.  

This greater variability arose due to combined pool (biological) and treatment variabilities.

This confidence level could be raised or lowered according to the level of confidence 

desired by altering the p value.  Therefore, modeling the variance data provides a 

complimentary method for examining the variation of genes across the complete range of 

absolute expression values. 

The upper 99.9% confidence limit (CL) of a robust estimation of the coef ficient of 

variance (CV) for replicates (within-treatment variability) has been modeled as a function of  

absolute minimum expression of all treatments using the following model:

Upper 99.9% CL = c + d/mean expression

The selected genes are now those for w hich the CV of treatment expressions (between -

treatment variability) is larger than this limit (Figure 1c).  By overlapping those genes 

selected by the LFC model (red dots) on the graph indicating the 99.9% CL (blue line), one  

observes that the LFC model is considerably more restrictive when selecting lowly expressed 

genes (Figure 1c).

Validation by real -time PCR (RT -PCR)

A subset of differentially expressed genes were selected to confirm the LFC model, 

where genes were selected across the range of absolut e expressions and with varying fold 

changes.  Although not discussed in the present manuscript, a good description of the 

technique and an example of an excellent experimental design can be found in previous 

publications [26,30], respectively.  In brief, all genes were amplified in the Applied 

Biosystems 5700 instrument using SYBR ® green (Molecular Probes), a dye that binds 

double-stranded DNA.  Data represented means of triplicates for each experimental 

treatment using pooled RNA samples ( n=5).  Amplification was performed using an ABI 5700 

machine (Applied Biosystems, Foster City, CA, USA) with a hot start at 95 °C for 10 minutes, 

followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min for denaturation, annealing and 



elongation.  Genes were normalized to either β-actin or GAPDH, and then experimental diets 

(B,C,D) were compared to the control diet (A).  All fold changes were subjected to a student's 

t-test (α =0.05) to ensure fold changes observed by RT -PCR were statistically significant.  

Comparisons between microarray data and RT -PCR were then performed.



ABBREVIATIONS

CV: coefficient of variation

FC: fold change

HFC: highest fold change

LFC:  limit fold change function

MAE:  mean absolute expression

RN: rank number

RT-PCR: real time polymerase chain reaction

RV: rank value

SD: standard deviation

DEFINITIONS

Average Difference Intensity (ADI):  average measure of intensity of hybridization 

for a series of match and mismatch probe pairs tiled across a particular gene 

transcript.  ADI is an indicator of the absolute expression of a gene.

Concordance: state of agreement between two complementary measurement 

techniques which is directionally consistent, e.g. two techniques determine that 

values are statistically significant and that they are both either positive or negative.
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FIGURE LEGENDS

Figure 1. The relationship between absolute value, limit fold change (LFC), and 

variance across the absolute expression range. A) The x-axis threshold 

indicates those genes that have a minimum ADI of 20.  Genes in bin s of 200 

are examined for the top 5% highest fold changes (red horizontal lines indicate 

the 95th percentile for each bin).  The line of best fit, drawn through each bin in 

blue, identifies the overall LFC cut -off and is described by the simple equation 

5% LFC=1.74+91.55/min ADI.  B) Identifying the top 1% (black line) or 10% 

(red line)  highest fold changes in each bin shifts the LFC curve, when 

compared to the 5% LFC model (blue line), and alters the severity for the 

selection of differentially expressed genes (1% LFC=2.43+166.12/min ADI; 

10% LFC=1.59+69.47/min ADI).  C) The upper 99.9% confidence limit (CL) of 

a robust estimation of the coefficient of variance (CV) for replicates (within -

treatment variability) has been modeled as a function of absolute mi nimum 

expression of all treatments, as indicated by the blue line.  Overlaying the 

99.9% CL on the data selected by the 5% LFC model (red dots) ensures high 

confidence in the selected genes.

Figure 2.  Schematic representation of the cyclical nature of the limit fold 

change (LFC) model.  Selecting an initial X% LFC model (1) provides a 

starting point for the identification of those genes differentially regulated.  

Genes can then be ranked (2) by a calculation combining fold change and 

absolute expression in order to assign a degree of importance.  Validation of 

the chosen LFC model by a complementary technique such as RT -PCR (3) 

and/or the characterization of variance (4) enables the analyst to reexamine 

the initial LFC model and determine the confidence le vel for the results.  



Depending on the data set, one could redefine the LFC model and repeat the 

cycle.

Table 1. Concordance data between an Affymetrix 11MuK microarray and RT -PCR.

The fold changes observed with microarray and RT -PCR analysis are indicated, 

where a positive value indicates an increase in gene expression and a negative value 

a decrease in gene expression.  Through the coloring scheme, validation 

(confirmation by RT-PCR of the direction of fold change seen with microarrays) of low 

RV genes is not achieved; however, as RV increases, concordance increases (red = 

genes with no concordance across the 3 diets; blue = genes with either one or two 

measurements in agreement; green = genes with 100% concordance).  Overall 

concordance with the 5% LFC model was 77.7%, which includes measurements 

found to be both significant and non -significant by microarray analysis.  Underlined 

numbers indicate the HFC that resulted in this gene being selected as significantly 

different by the 5% LFC model (77.7% conc ordance with RT-PCR results).  Starred-

numbers indicate significant fold changes, determined by a student's t-test using 

α=0.05, seen by RT-PCR. § indicates those pairwise comparisons (treatment vs. 

control) that meet the 5% LFC model criteria.  85.7% conc ordance is seen when 

comparing significant fold changes by RT -PCR with significant fold changes using the 

5% LFC model.

Microarray Real Time PCRGene 
Name

Rank 
Number

Rank 
Value Diet D Diet E Diet F Diet D Diet E Diet F

RAS 225 774 -2.49§ -1.78 -1.67 1.81* 1.04 1.16

ABCA1/7 166 892 1.00 1.00 7.20§ 1.45 -1.12 -1.20

USF2 130 1156 1.16 -5.63§ 1.06 2.54 -1.08 1.98

Cyp4a10 25 5754 2.67§ 4.67§ 3.01§ 15.00* 18.81* 6.78*

SCD-1 20 7488 -1.12 -1.03 -1.77 2.50* -1.35 -2.65*

ALAS 7 12319 3.69§ 1.83§ 2.71§ 21.60* 8.51* 8.03*

FAS 3 22928 -1.92§ -1.27 -5.40§ -1.78 -1.40 -17.11*

ApoA4 2 32537 -2.57§ -3.20§ -17.18§ -1.32 -3.01 -4.90*

FABP5 1 40749 -5.46§ -8.43§ -13.59§ -2.94* -8.49* -16.37*



Figure 1



Figure 2


	Header page
	Article
	Start of article
	Figure 1
	Figure 2


