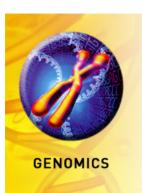
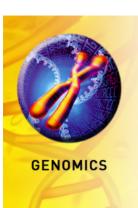


Pitfalls of primer and probe design and synthesis

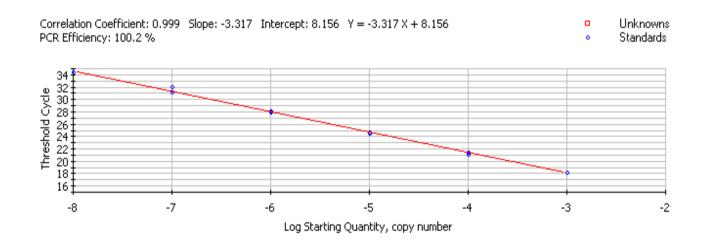

Mary Span
Senior Product Manager
Eurogentec S.A.

Steps in qPCR assay

- Set up experiment
 - statistical relevant # samples/experimental group
 - controls
- Design primers and probes
- RNA extraction
 - quality of RNA
- Reverse Transcription reaction
 - one step or two step reaction
- qPCR reaction
 - singleplex or multiplex
- Data analysis

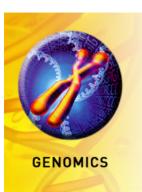


PCR efficiency

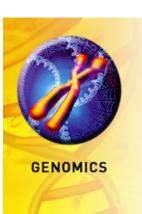

- High PCR efficiency
 - high accuracy
 - high reproducibility
- PCR efficiency influenced by
 - length of amplicon
 - GC content of amplicon
 - secondary structures in primers, probes, amplicons
 - concentration reaction components
 - PCR inhibitors/PCR enhancers
 - quality RNA/cDNA

PCR efficiency

 Easiest way to determine PCR efficiency: standard curve with R² close to 1,00 and intercept close to -3,32

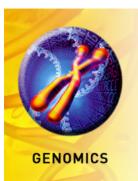


Efficiency =
$$10^{(-1/\text{slope})}$$
 -1



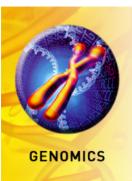
PCR efficiency

- 100% PCR efficiency
 - every PCR cycle amount of DNA is doubled
 - 2x dilution curve ΔCt of 1 between every dilution
 - 10x dilution curve ΔCt of 3,2 between every dilution
- Variation coefficient (R²)
 - indication how well data points lie on one straight line
 - low R² indication for pipetting mistakes, inaccurate way of working, diluting out inhibitory factors

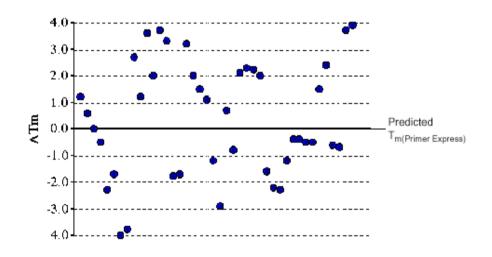


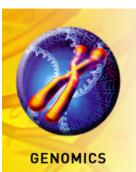
Why do you need a good primer and probe design?

- Well-designed primers and probes are a prerequisite for successful RT qPCR in terms of
 - high PCR efficiencies
 - specific PCR products
 - no co-amplification of genomic DNA
 - no amplification of pseudogenes
 - most sensitive results



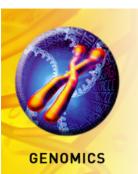
Remarks primer and probe design


- Try to make primers fit the probe and not the probe fit the primers
- Do not expect that the primers you used before for your normal PCR will be the ideal pair to which a probe can be designed
- Using a design software is not a 100% guarantee to get a good primer/probe set, but is a good tool to make your life easier
- Especially with SYBR® green I assays; try several primer sets
- It is not always possible to design a primer/probe set for a specific sequence
- The first suggestion in the list of Primer Express[®] is the shorted amplicon, not the best primers and probe



Remarks primer and probe design

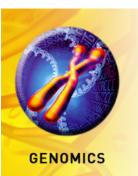
- Check Tm using several softwares
- If Tm differs by more than 3°C check Tm experimentally



Design guidelines for SYBR® green I assays

Primers

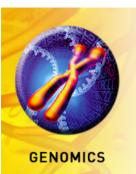
- length
 - 18-30 bases
- GC content
 - 30-80% (ideally 40-60%)
- Tm
 - 63-67°C (ideally 64°C), so that Tannealing is 58-62°C (ideally 59°C)
 - ΔTm forward primer and reverse primer < 4°C
- avoid mismatches between primers and target, especially towards the 3' end of the primer
- avoid runs of identical nucleotides, especially of 3 or more Gs or Cs at the 3' end
- avoid 3' end T (allows mismatching)
- avoid complementarity within the primers to avoid hairpins (check using a software)



Design guidelines for SYBR® green I assays

Amplicon

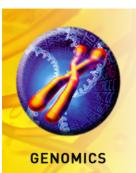
- length
 - 80-150 bp
 - shorter amplicons will give higher PCR efficiencies
 - longer amplicons will give a higher ΔRn as more SYBR® green I is incorporated
- GC content
 - 30-80% (ideally 40-60%)
- avoid secundary structures in the amplicon (check with Mfold: www.bioinfo.rpi.edu/applications/mfold/)



Design guidelines for 5' exonuclease assays

Probes

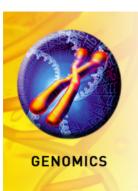
- length
 - 18-30 bases
 - Optimal: 20
 - lengths over 30 bases are possible, but it is recommended to position the quencher not at the 3' end, but internally 18-25 bases from the 5' end
- GC content
 - 30-80%
- Tm
 - Tm of the probe must be 8-10°C (8°C for genotyping, 10°C for expression profiling) higher than the Tm of the primers
- select the strand that gives the probe more Cs than Gs
- place probe as close as possible to primers without overlapping them
- avoid mismatched between probe and target
- avoid runs of identical nucleotides, especially of 4 or more Gs
- avoid 5' end G (quenches the fluorophore)
- for multiplex assays: for genotyping
 - position the polymorphism in the center of the probe
 - adjust the probe length so that both probes have the same Tm



Design guidelines for 5' exonuclease assays

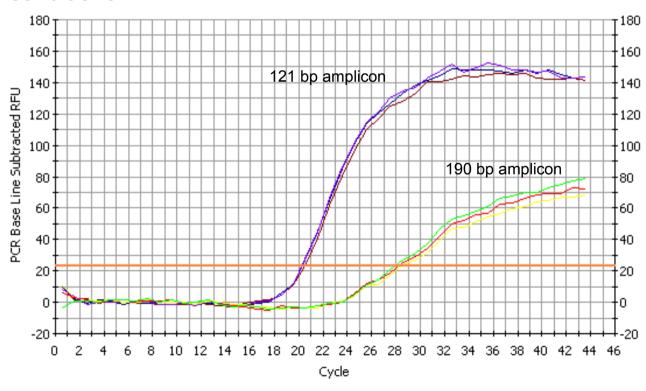
Primers

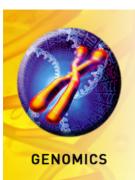
- length
 - 18-30 bases
- GC content
 - 30-80% (ideally 40-60%)
- Tm
 - 63-67°C (ideally 64°C), so that Tannealing is 58-62°C (ideally 59°C)
 - ΔTm forward primer and reverse primer < 4°C
- avoid mismatches between primers and target, especially towards the 3' end of the primer
- avoid runs of identical nucleotides, especially of 3 or more Gs or Cs at the 3' end
- avoid 3' end T (allows mismatching)
- avoid complementarity within the primers to avoid hairpins (check using a software)



Design guidelines for 5' exonuclease assays

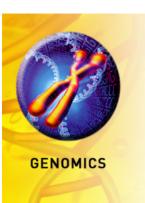
Amplicon


- length
 - 80-120 bp optimal (up to 1000 bp possible with adjusted reaction times)
 - shorter amplicons will give higher PCR efficiencies and more efficient 5' nuclease reactions
- GC content
 - 30-80% (ideally 40-60%)
- avoid secundary structures in the amplicon (check with Mfold: www.bioinfo.rpi.edu/applications/mfold/)



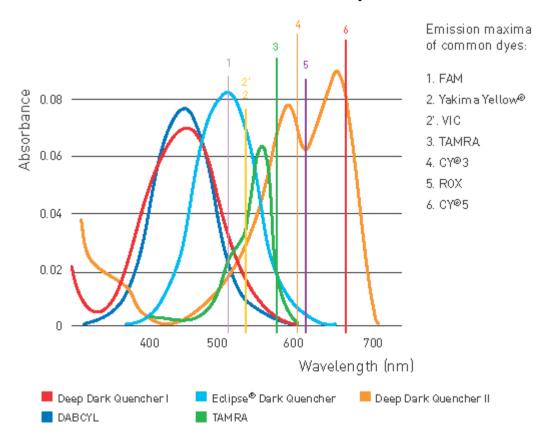
Example design 18S rRNA

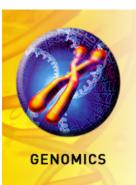
 Comparison between two different primer-probe sets for 18S rRNA using same reaction components and experimental conditions



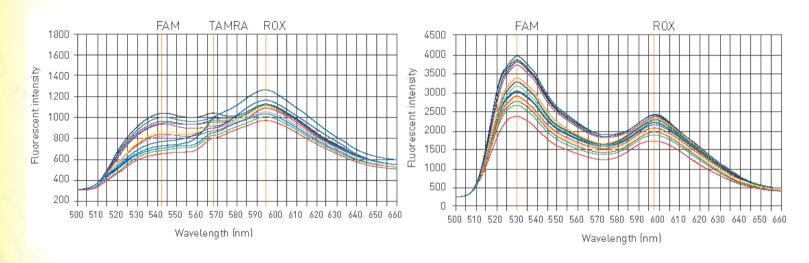
Guidelines for fluorophores and quenchers

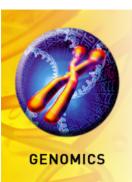
Fluorophore has to fit real-time thermocycler


Thermocycler	Dye1	Dye2	Dye3	Dye4	Dye5	Dye6	Dye7
GeneAmp® 5700	FAM						
ABI Prism® 7000	FAM	VIC/YY/JOE	NED/TAMRA	ROX			
ABI Prism® 7700	FAM	VIC/YY/JOE/TET	NED/TAMRA	ROX			
ABI Prism® 7900	FAM	VIC/YY/JOE/TET	NED/TAMRA	ROX			
ABI Prism® 7300	FAM	VIC/YY/JOE	NED/TAMRA	ROX			
ABI Prism® 7500	FAM	VIC/YY/JOE	NED/TAMRA/Cy3	ROX/TR	Cy5		
i-cycler IQ®	FAM	VIC/HEX/TET/Cy3/YY	Cy3/TAMRA	ROX/TR	Cy5		
Mx3000P®	FAM	TET/YY	HEX/JOE/VIC/YY	TAMRA	Cy3	TR/ROX	Cy5/Alexa 350
Mx4000®	FAM	TET/YY	HEX/JOE/VIC/YY	TAMRA	Cy3	TR/ROX	Cy5
Rotorgene 2000	FAM	TET/JOE/VIC/YY	ROX/TAMRA/Cy3/TR	Cy5			
Rotorgene 3000	FAM	TET/JOE/VIC/YY	MAX/ROX/Cy3/TR	Cy5			
DNA Engine Opticon® 1	FAM						
DNA Engine Opticon® 2	FAM	TET/HEX/VIC/YY/TAMRA					
Chromo 4	FAM	TET/JOE/VIC/YY	ROX/TR	Cy5			
Smartcycler® 1	FAM	TET/JOE/VIC/YY	TAMRA/Cy3/Alexa	ROX/TR			
Smartcycler® 2	FAM	TET/Cy3/YY	ROX/TR	Cy5			
Lightcycler®	FAM	LC Red 640/ROX	LC Red 705/Cy5				
Lightcycler® 2.0	FAM	HEX/VIC/YY	LC Red 610	LC Red 640	LC Red 670	LC Red 705	
Quantica ®	FAM	TET/HEX/VIC/YY/TAMRA					



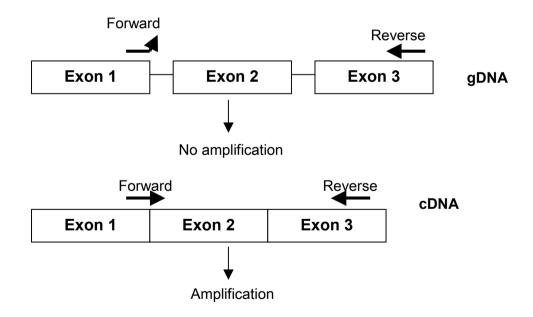
Guidelines for fluorophores and quenchers

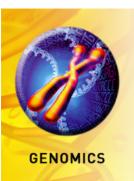

Quencher has to fit fluorophore



Guidelines for fluorophores and quenchers

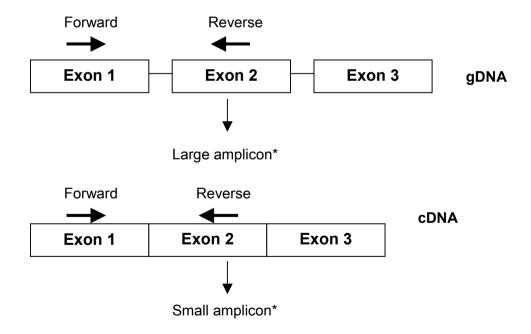
Singleplex or multiplex - TAMRA or DDQ1?

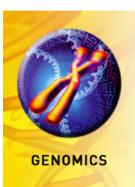




How to avoid or detect co-amplification of genomic DNA?

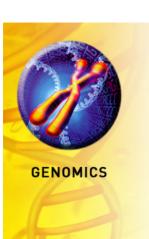
Intron spanning primers





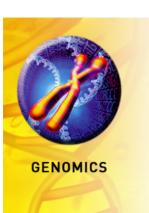
How to avoid or detect co-amplification of genomic DNA?

Intron flanking primers



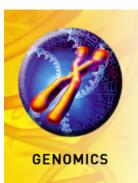
How to avoid or detect co-amplification of genomic DNA?

- DNase I treatment of samples with RNase free DNase (Vandesompele, 2002) especially in cases of single exon genes
- Positions of exons and introns can be found in NCBI LocusLink databases (www.ncbi.nlm.nih.gov/LocusLink/)



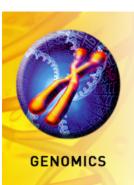
How to avoid co-amplification of other genes?

 Check if primers are unique and specific by submitting your primers to a BLAST search (www.ncbi.nlm.nih.gov/BLAST/)



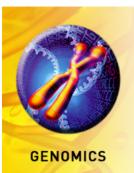
How to avoid primer-dimers or primer-probe dimers?

- Avoid complementarity between the primers, especially at 2 or more bases at the 3' ends of the primers (check using a software)
- Avoid complementarity of the probe with either of the primers (check using a software)



Recommended softwares

- Design of primers and probes
 - any primer design software/Oligo® 6.0/Primer 3.0
 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi)
 - Primer Express[®] (TaqMan [®] probes)
 - BeaconDesigner® (Molecular Beacons)
 - Scorpio (Scorpions® primers)
- Verification of design
 - Mfold
 - BLAST
- A software is just a tool to help you, not a guarantee for the perfect design!



Additional information

- Your one-stop-shop real-time PCR supplier
- Troubleshooting guide for RT qPCR and qPCR
- Frequently asked questions for RT qPCR and qPCR
- This documentation is also available on www.eurogentec.com

Disclaimer

SYBR® is registered trademark of Molecular Probes Inc.

TaqMan® is a registered trademark of Roche Molecular Systems Inc.

Scorpions® is registered trademark of DxS Ltd.

ABI PRISM® is a registered trademark of The Perkin-Elmer Corp.

iCycler iQ® is a registered trademark of Bio-Rad Laboratories Inc.

Mx3000p® and Mx4000® are registered trademarks of Stratagene

DNA Engine Opticon[®] is a registered trademark of MJ Research Inc.

SmartCycler® is a registered trademark of Cepheid Inc.

Primer Express® is a registered trademark of Applera Corporation

Oligo® Primer Analysis software is a registered trademark of Molecular Biology Insights Inc.

BeaconDesigner® is a registered trademark of Premier Biosoft Inc.

