

Amplification Based Assays in the Nanoliter Volume Range

Andreas Dahl

Max Planck Institute for Molecular Genetics
Berlin

Overview

- Miniaturisation
- Platform properties
- qPCR assay implementation
- Tissue specific expression study

Motives for Miniaturisation

- Reduction of needed biological material
- Reduction of costs
- Shorter processing time
- Higher data density

Microstructured Titerplates in Miniaturisation

Technologies in arrayed formats

Challenges for Miniaturisation of Liquid Assays

- Surface-to-volume ratio → wall-reactant interactions
- Liquid handling → nanodispensing
- Detection sensitivity (at reasonable cost & equipment effort)
- Connectivity to other platforms → Macro-to-micro interface
- Flexibility, combinatory aspects & assay diversity

The Open Well Approach

- + large number of individual reactors
- + random access to individual wells
- + samples kept in confined space

- contamination risk from environment (dusk)
- volume transfer demands rather complex systems
- evaporation

Overview

- Miniaturisation
- Platform properties
- qPCR assay implementation
- Tissue specific expression study

Goals of Development

- Enabling of PCR based assays below the 500nl volume threshold
 - real-time detection
 - substrate material issues & chip design
 - robust biochemical assays
 - critical concentrations for reaction partners
- Applicability in a setup for high throughput screening
 - Efficient, robust and accurate liquid handling
 - flexibility, combinatory aspects & assay diversity

Goals of Development

- Platform for functional genomics:
 - Needs application of variety of assays
 - High data density
 - Large number of targets and/or samples
 - Combination with other technologies

Applications of Miniaturised Amplification Based Assays

- Real-time quantification
 - Expression profiling
 - Immuno PCR
- Endpoint measurement
 - Genotyping
- Combination with other systems
 - Re-Sequencing
 - Mutation screening

The µPCR Chip

- •32x32 wells
- Working volume 200nl/well
- Sealing with adhesive films

.

Camera with objective

Processing Unit

Liquid Handling in Nanoliter Volume Range

μPCR chip with valve dispensing nozzles

Non contact dispensing

- Piezo dispensing
 - Scienion, Berlin
- Valve dispensing
- <
 ☐ Seyonic, Switzerland
 - Caliper, US

Valve Dispensing

- Resolution of 25nl
- Parallelisation of dispensing (8-Nozzle bank → 96-nozzle-array)
- Separation liquid → reduction of dilution/mixing effects in nozzle

Piezo Dispensing

- 400pl resolution
- 8 nozzles in parallel
- Highly flexible positioning

Workflow

Summary I – Platform Properties

- Combination of high reactor density with real-time based quantification
- 200nl working volume in μPCR chip
- Image/filter based detection system
- Workflow allows flexibility and throughput
- Parallelised non contact liquid handling

Overview

- Miniaturisation
- Platform properties
- qPCR assay implementation
- Tissue specific expression study

The Appropriate qPCR Assay

SybrGreen assays

- False positives due to primer dimerisation
- Increased volume-to-surface ratio seems to enhance this effect

 3 x 1µl PCR

 6 x 0.5µl PCR

Probe based assays

- -No signal from primer dimers
- -Robust

Be aware of:

Straight forward system, no possibility of post investigation (gel)

Andreas Dahl, Max Planck Institute for Molecular Genetics, Berlin - qPCR 2005, Munich

μPCR Chip – real-time Measurement

Image retrieval Image analysis Raw data Data normalisation

Capability of Quantification

Mean values of normalised intensities

200nl, target: hgDNA, RNAse P TaqMan assay, number of initial molecules: 100, 50, 10, 5

Capability of Quantification

200nl, target: hgDNA, RNAse P TaqMan assay, number of initial molecules: 100, 50, 10, 5

Variation of Ct-values Correlates with Number of Initial Target Molecules

200nl, Target: hgDNA, RNAse P TaqMan Assay, 36-fold

Impact of Increased Variation on Quantification

Standard curve – 3 points

200nl, Target: hgDNA, RNAse P TaqMan Assay, 36-fold

Reproducibility

Chip to Chip comparison

- -2 identically pre-configured and processed μPCR chips
- -Variation increases dramatically with ct-value above 35
- -Ct-value of 35 seems to be limiting threshold for reliable quantification

Limiting Target Concentrations for Detection

Stochastics Below 10 initial Target Molecules

Summary II – Miniaturised Assay

- Probe assays verified for real-time detection assays in nanoliter volume range
- Ct-value variation correlates with number of initial target molecules
- Chip to chip variation decreases with lowering the target concentration
- Capability of quantifications down to low molecule level with RNAse P TaqMan assay
- Below 10 initial molecules strong impact of stochastics

Overview

- Miniaturisation
- Platform properties
- qPCR assay implementation
- Tissue specific expression study

Tissue Specific Expression Profiling (Mouse)

- set of 19 genes, which are known to be tissue specific expressed
- samples from 5 tissues (brain, liver, kidney, cerebellum and heart)
- each reaction has been done 5-fold, each
 μPCR chip was processed in duplicate
- 10μl volume as standard assay, 4-fold

Comparison of Absolute Ct-values I

Standard(10µl)

ACTB 40 35 30 25 20 15 BRAIN HEART LIVER CEREBELLUM KIDNEY

μPCR Chip (200nl)

Comparison of Absolute Ct-values II

Standard(10µl)

Plscr2 40.00 35.00 25.00 10.00 10.00 5.00

Heart

0.00

Brain

μPCR Chip (200nl)

• Comparability of 10µl and 200nl reactions heterogeneous

Kidnev

- Higher variation in 200nl

Liver

Stringent definition of outliers needed

Cerebellum

Data normalisation

Summary III – Mouse Study

- Workflow verified
- Selected assays show comparable ct-value patterns in both volumes
- Impact factors on variability
 - Reliable & reproducible preloading with sample DNA
 - Wall-reactant-interactions
 - Data normalisation & evaluation

Outlook

- Reduction of variation in 200nl
 - Optimisation of dispensing accuracy
 - Optimisation of assay performance
- Large scale experiments on platform
- Further applications
 - Genotyping, ImmunoPCR
- Further reduction of the volume
- Surface modification

Acknowledgement

MPI for Molecular Genetics, Berlin

Matthias Lange Regine Schwartz

Marc Sultan Lajos Nyarsik

Hans Lehrach

Applied Biosystems, Germany

Alexander Jung Simone Günther

Michael Steinwand

Applied Biosystems, US

Ken Livak Stephen Gunstream

Thank You!

μPCR Chip – real-time Measurement

Raw data plot

(fluorescence intensities of each well over time, one image per cycle, data achieved by image analysis)

Normalised data plot

(the dotted lines are the averages of the 5-fold measurement per concentration)

Anareas Dani, Max Pianck Institute for Molecular Genetics, Berlin - qPCR 2005, Munich

Data Normalisation

- Removing noise of the system
- Normalisation of differences in reaction volumes

Andreas Dahl, Max Planck Institute for Molecular Genetics, Berlin - qPCR 2005, Munich