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■ Abstract Currently, more than 10 million DNA sequence variations have been
uncovered in the human genome. The most detailed variation discovery efforts have
focused on candidate genes involved in cardiovascular disease or in susceptibilities as-
sociated with exposure to environmental agents. Here we provide an overview of natural
genetic variation from the literature and in 510 human candidate genes resequenced for
variation discovery. The average human gene contains 126 biallelic polymorphisms,
46 of which are common (≥5% minor allele frequency) and 5 of which are found in
coding regions. Using this complete picture of genetic diversity, we explore conserva-
tion, signatures of selection, and historical recombination to mine information useful
for candidate gene association studies. In general, we find that the patterns of human
gene variation suggest that no one approach will be appropriate for genetic associa-
tion studies across all genes. Therefore, many different approaches may be required to
identify the elusive genotypes associated with common human phenotypes.

INTRODUCTION

Since the completion of the sequencing of the human genome (46, 108), there have
been great strides in cataloguing and describing human gene variation (e.g., 83).
The most common genetic variation in the human genome is the single nucleotide
polymorphism (SNP). Currently, there are more than 10 million SNPs recorded
in dbSNP (build 123), the public repository for DNA variations (see Electronic
Databases). With a complete catalogue of common SNPs nearly in sight, investi-
gators are now developing methods to apply SNPs to genetic association studies
with the hopes of identifying DNA variants that contribute to an increased sus-
ceptibility to human diseases. With this in mind, we use this review to not only
describe the patterns of human gene variation, but also to practically demonstrate
how this variation may be applied to the next generation of well-designed genetic
association studies.
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SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN GENES

Resequencing genes or genomic regions in several population samples is consid-
ered the gold standard for cataloguing genetic variation for any species. Currently,
more than 11.5 megabases of reference sequence have been scanned for DNA vari-
ation discovery by two of the largest targeted resequencing efforts undertaken: the
National Heart, Lung, and Blood Institute’s Program for Genomic Applications
and Pharmacogenetics and Risk of Cardiovascular Disease (SeattleSNPs PGA and
PARC, collectively referred to here as SeattleSNPs PGA) and the National Institute
for Environmental Health Sciences’ Environmental Genome Project (EGP). If the
number of individuals resequenced by these two projects is taken into account,
close to 1 gigabase has been resequenced, which is equivalent to one third of the
human genome and underscores the dramatic leaps in DNA sequencing technol-
ogy. The SeattleSNPs PGA project resequences genes involved in inflammation,
lipid metabolism, and blood pressure regulation (10, 26), whereas the EGP project
resequences genes involved in DNA repair, cell cycle regulation, drug metabolism,
and apoptosis (58). For most genes less than 35 kb in length, the entire genomic
transcript, including all exons and introns, as well as ∼2 kb upstream of the gene
and ∼1.5 kb downstream of the gene, is targeted for resequencing. For larger genes
(more than 35 kb in length), introns are not typically completely sequenced, but
are “sampled.” These two projects differ from other large resequencing efforts (7,
84, 96) in that both coding and noncoding regions (including introns) of the gene
are targeted in resequencing for variation discovery. A detailed description of the
laboratory methods for these projects is available on the SeattleSNPs PGA and
EGP Web sites (see Electronic Databases).

To date, the SeattleSNPs PGA has resequenced approximately 3.8 megabases
across 180 genes in 47 individuals, comprising 23 Americans of European descent
and 24 Americans of African descent. The EGP has resequenced 7.7 megabases
across 330 genes in a subset of 90 individuals from the Polymorphism Discovery
Resource 450 Panel (20), a panel designed to represent the American popula-
tion with 24 Americans of European descent, 24 Americans of African descent,
24 Asians, 12 Hispanics, and 6 Native Americans. More than 75% of the targeted
transcript was resequenced for approximately 70% of the genes presented here.
The average candidate gene size is 20.9 kb in the SeattleSNPs PGA data set and
44.6 kb in the EGP data set. Together, these two projects have annotated 64,451
DNA sequence variations in 510 candidate genes spanning all 23 human chromo-
somes. The 510-gene data set represents approximately 2% of the predicted protein
coding genes in the human genome (47). As expected, for the SeattleSNPs PGA
data set, the African-American population has a greater overall number of variants
(17, 701) compared with the European-American sample (11,009). The average nu-
cleotide diversity (π ) per gene is 9.01 × 10−4 and 6.97 × 10−4 for the African- and
European-American samples, respectively. This measure of nucleotide diversity
predicts one SNP every 1110 basepairs (bp) (African-Americans) and 1435 bp
(European Americans) when any two chromosomes are compared. All DNA
variations identified by the SeattleSNPs PGA and EGP, as well as allele frequencies
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and individual genotypes, are routinely deposited in GenBank and dbSNP, the
public repository for DNA variations (91, 92, 113). All DNA variations and cor-
responding data are also available for viewing and/or download on our Web sites
(see Electronic Databases), and the list of genes analyzed here can be requested
from the authors.

DNA sequence variations annotated by these two projects consist of both SNPs
and insertion/deletion polymorphisms (3), collectively referred to as SNPs here.
The occurrence of SNPs across the human genome is common, with one ap-
proximately every 180 bp, based on resequencing 137 individuals. The estimate
from these data agrees with estimates derived from population genetics theory
(55) and from empirical estimates based on other resequencing surveys (43, 96).
Although the occurrence of SNPs across the genome is frequent, we and other
investigators find that most SNPs are rare (64% of all SNPs), with a minor al-
lele frequency (MAF) of <5%. Also, fewer SNPs are within coding regions of
the gene [coding SNPs (cSNPs) 4%] compared with noncoding regions of the
gene (96%), as previously observed (42, 58). The average gene in the combined
SeattleSNPs PGA and EGP data sets (such as VCAM1) (Figure 1) has 126 SNPs,
46 of which are common (MAF ≥ 5%) and 5 of which are cSNPs. These obser-
vations have major implications for performing candidate gene association stud-
ies using either direct or indirect approaches, both of which we discuss further
below.

ASSOCIATION STUDIES AND SINGLE NUCLEOTIDE
POLYMORPHISMS

Association studies have become the focus of most study designs for identify-
ing loci that are involved in complex, common human disease (e.g., heart disease,
stroke, diabetes, and cancer). Prior to the completion of the Human Genome Project
and the emergence of dense genetic maps, investigators used linkage studies and
positional cloning to identify DNA mutations that caused rare disorders such as
cystic fibrosis (52, 81) and Huntington’s disease (40, 104). Despite the success of
identifying genes segregating in classic Mendelian fashion as recessive or domi-
nant disorders (37), investigators have been less successful in identifying loci that
contribute to complex, common diseases. A landmark paper in 1996 by Risch &
Merikangas (82) suggested that association study designs could be more powerful
compared with linkage study designs in identifying the elusive susceptibility loci
that geneticists seek. Furthermore, it was suggested that common DNA variation,
as opposed to rare mutations, could be responsible for a proportion of common
human diseases [i.e., the common variant/common disease (CV/CD) hypothesis ]
(14, 22, 56). Even though these suggestions and their potential for success in identi-
fying genetic loci involved in common human diseases remain controversial (112),
resources for association studies, such as dense genetic maps of SNPs across the
human genome, are enabling investigators to more rapidly identify disease-causing
loci that could potentially have a major impact on public health (21).
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THE “DIRECT” APPROACH

As investigators begin to mine the resources available for association designs, two
approaches have emerged for studying candidate genes: direct and indirect (22). In
a direct candidate gene association study, the putative causative SNP is genotyped
directly. The challenge of this approach is predicting or determining a priori which
SNPs are likely to be causative or predict the phenotype of interest. Oftentimes,
a SNP is suspected to be causative if it is a nonsynonymous SNP (nsSNP); that
is, if the cSNP changes the amino acid in the protein of the gene of interest
(reviewed in 5). For example, in a simple yet elegant experiment, Cohen et al.
(19) hypothesized that genetic variants in three candidate genes are responsible
for very low levels of high-density lipoprotein cholesterol (HDL-C), and that these
variants would be found more often in individuals with low HDL-C compared with
individuals with high HDL-C. Cohen et al. (19) resequenced the coding regions
and splice sites of three candidate genes within individuals with extremely low
and high levels of HDL-C and identified several nsSNPs over-represented among
individuals with low HDL-C compared with high HDL-C. In contrast to the positive
finding of rare SNPs contributing to the phenotype, no association was identified
with common SNPs (MAF > 10%) and HDL-C in one population examined as
part of the Dallas Heart Study (19), further affirming the utility and success of the
“direct” candidate gene approach for this phenotype.

Although the direct approach using nsSNPs has proven successful, it is not with-
out serious challenges. The first major challenge is the fact that cSNPs in general
are fewer in number within genes compared with noncoding SNPs (noncSNPs)
(42, 58). Also, cSNPs are rarer than noncSNPs, resulting in a lower average MAF
among cSNPs compared with noncSNPs (38, 107). This challenge is particularly
relevant to SNP discovery strategies. Currently, the goal of many large-scale SNP
discovery projects is to catalogue common human DNA variation (23). Both the
SeattleSNPs PGA and EGP projects resequence a sample size necessary to capture
common variation (MAF > 5%) at a detection rate of 95% (55) in at least two pop-
ulations: African Americans and European Americans. SNPs with a MAF < 5%
would require twice the sample size (96 chromosomes) for a similar detection rate
(55). Alternatively, rarer cSNPs could be more readily identified by resequencing
individuals in the extreme upper and lower percentile of a specific phenotype, as did
Cohen et al. (19). For both approaches, to obtain the complete catalogue of SNPs,
including both coding and noncoding, will require more effort and resources.

A second challenge is that not all cSNPs are deleterious. Only approximately
half of the cSNPs are nsSNPs in the general population (6, 7, 43, 84, 87, 96),
with only a fraction predicted to be deleterious to protein function. Recent strides,
however, have been made in the development of tools that predict in silico the effect
a nsSNP has on gene function. These tools (e.g., SIFT and PolyPhen) use structural
criteria and sequence homology to predict nsSNP function (15, 18, 67, 78, 102).

In our SeattleSNPs PGA and EGP data sets, 2778 (4.3%; 1 every 4 kb) of
the SNPs discovered are classified as cSNPs (synonymous and nonsynonymous),
of which 1396 (2.2% of all SNPs) are classified as nonsynonymous. Similar to
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another large-scale resequencing survey (96), the average gene across both data
sets contains four cSNPs, half of which are nsSNPs. Of all nsSNPs in the Seat-
tleSNPs PGA and EGP, 186 are classified as “intolerant” by SIFT and “probably
damaging” or “possibly damaging” by PolyPhen. Many of these potentially dele-
terious cSNPs do not seem to be randomly distributed across the 510-gene data set;
that is, many of these cSNPs are clustered in a few genes, such as CYP4F2 (three
potentially deleterious cSNPs) in the SeattleSNPs PGA data set and CYP2C9 (four
potentially deleterious cSNPs) in the EGP data set.

A list of the potentially deleterious cSNPs was recently reviewed for the EGP
data set (58). To summarize those data, 57 cSNPs out of 541 nsSNPs in the
EGP were predicted to be intolerant by both SIFT and PolyPhen (58). For the
SeattleSNPs PGA data set, 69 nonsynonymous cSNPs are predicted by both
PolyPhen and SIFT to be deleterious to protein function (Table 1). From the 69
potentially deleterious cSNPs, 8 have a MAF ≥ 5% in both African-American and
European-American samples; 20 have a MAF ≥ 5% in African-American sam-
ples, and 18 have a MAF ≥ 5% in European-American samples. The Pfam and
Human Gene Mutation Databases were scanned in an effort to identify function-
ally important protein domains and previously reported phenotypic information
associated with these potentially deleterious polymorphisms. The Pfam database
was searched to determine if any of the 69 SeattleSNPs PGA cSNPs occur within
identifiably important proteins domains. Of the 69 potentially deleterious cSNPs,
37 are located within Pfam domains (Table 1). These 37 cSNPs are good candidates
for association and functional studies because they may disrupt protein folding,
protein stability, or protein-protein interactions.

In addition to these 37 potentially detrimental cSNPs, of the 69 SeattleSNPs
PGA nonsynomous cSNPs, 8 are associated with a known phenotype as reported
in the Human Gene Mutation Database. For example, all three of the ABO cSNPs
listed in Table 1 (P74S, R176G, and F216I) were previously identified and corre-
spond to ABO blood group variation (69, 115). Also, KEL R281W was previously
reported as a kell blood group variant (57), IL4R C431R is associated with IgE
levels (41), MC1R R151C and R160W are associated with red hair color and vulner-
ability to UV-induced skin damage (34, 95), and TNFRSF1B M196R is associated
with hyperandrogenism and polycystic ovary syndrome (72). Considering that 8
of the 69 potentially deleterious cSNPs are associated with a phenotype, these data
suggest that the remaining 61 potentially deleterious cSNPs listed in Table 1 are
good candidates for disease association and functional studies.

Besides the potentially deleterious nsSNPs, such as the ones described above,
there are several other SNPs that should be considered candidates for direct candi-
date gene association studies. These include SNPs that introduce stop codons and
cause premature truncation of the protein, SNPs that alter splice sites, and diallelic
insertion/deletion polymorphisms that cause frame shifts. The SeattleSNPs PGA
and EGP projects have identified a total of 16 SNPs that introduce a premature
stop codon, 15 SNPs that alter splice sites, and 23 insertion/deletion polymor-
phisms that cause a frame shift with a frequency of one per 0.22 megabases rese-
quenced, collectively (Table 2). Most of these SNPs are found only once or twice
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TABLE 1 Potentially deleterious nonsynonymous cSNPs predicted by SIFT
and Polyphen in the SeattleSNPs PGA data set

HUGO
symbola

Locus
linkb

rs
(dbSNP)c

AA
freqd

EA
freqe

AA
Pos.f

Major
alleleg

Minor
alleleh Pfam domainsi

ABO 28 512770 0.12 0.14 74 P S PF03414 Glyco-
syltransferase
family 6

ABO 28 7853989 0.23 0 176 R G PF03414 Glyco-
syltransferase
family 6

ABO 28 8176740 0.17 0.24 216 F I PF03414 Glyco-
syltransferase
family 6

BDKRB2 624 2227279 0.04 0 354 G E

BF 629 4151667 0 0.07 9 L H

C2 717 4151648 0.07 0 734 R C PF00089
Trypsin

C3 718 — 0 0.24 314 P L

CKM 1158 — 0.02 0 243 G A PF00217
ATP:guanido
phosphotrans-
ferase

CSF3R 1441 3917996 0.02 0 562 Y H PF00041
Fibronectin
type III domain

CYP4F2 8529 3093104 0.02 0 7 S Y

CYP4F2 8529 3093153 0.02 0.04 185 G V PF00067
Cytochrome
P450

CYP4F2 8529 2108622 0.09 0.17 433 V M PF00067
Cytochrome
P450

EPHB6 2051 8177143 0.03 0 267 P R

F11 2160 — 0.07 0 339 C F PF00024 PAN
domain

F12 2161 — 0.02 0 605 Y H PF00089
Trypsin

F13A1 2162 3024477 0 0.04 205 Y F

F2R 2149 2227799 0.02 0 412 S Y

F2RL3 9002 2227346 0.1 0 296 F V PF00001 7
transmembrane
receptor

(Continued )
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TABLE 1 (Continued )

HUGO
symbola

Locus
linkb

rs
(dbSNP)c

AA
freqd

EA
freqe

AA
Pos.f

Major
alleleg

Minor
alleleh Pfam domainsi

F5 2153 — 0.05 0 15 G S

F5 2153 6018 0.02 0.07 817 N T

F5 2153 6005 0.06 0 1146 H Q

F5 2153 — 0.08 0.02 1404 P S PF06049
Coagulation
Factor V
LSPD Repeat

F5 2153 — 0 0.05 2148 M T PF00754 F5/8
type C domain

F9 2158 4149751 0.02 0 461 T P

FGG 2266 6063 0 0.02 191 G R PF00147
Fibrinogen
beta and
gamma chains

HABP2 3026 7080536 0.02 0.04 534 G E PF00089
Trypsin

IKBKB 3551 — 0 0.02 554 R W

IL11RA 3590 — 0 0.02 395 R W

IL12B 3593 3213119 0 0.02 298 V F PF00041
Fibronectin
type III domain

IL12RB2 3595 — 0.02 0 808 L R

IL17RB 55540 — 0.05 0 499 C R

IL21R 50615 — 0.02 0 191 R C

IL21R 50615 — 0.15 0 484 G S

IL2RA 3559 — 0.02 0 272 I T

IL4R 3566 1805012 0.09 0.13 431 C R

IL4R 3566 3024678 0.02 0.02 675 P S

IL8RA 3577 — 0 0.02 335 R C

ITGA8 8516 2298033 0.04 0.02 577 S F

KEL 3792 8176059 0 0.02 281 R W PF05649
Peptidase
family M13

KLKB1 3818 3733402 0.35 0.45 143 N S PF00024 PAN
domain

(Continued )
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TABLE 1 (Continued )

HUGO
symbola

Locus
linkb

rs
(dbSNP)c

AA
freqd

EA
freqe

AA
Pos.f

Major
alleleg

Minor
alleleh Pfam domainsi

KLKB1 3818 4253379 0.02 0 358 T A PF00024 PAN
domain

MC1R 4157 1805007 0 0.11 151 R C PF00001 7
transmembrane
receptor

MC1R 4157 1110400 0 0.02 155 I T PF00001 7
transmembrane
receptor

MC1R 4157 1805008 0 0.09 160 R W PF00001 7
transmembrane
receptor

MMP9 4318 3918252 0.06 0 127 N K PF00413
Matrixin

NFKBIB 4793 — 0 0.02 339 R W

PLAT 5327 8178733 0.05 0 34 A D

PLAT 5327 8178747 0.02 0 136 R S PF00051
Kringle
domain

PLAT 5327 2020921 0 0.05 164 R W PF00051
Kringle
domain

PLAUR 5329 4251813 0.02 0 55 E G PF00021
u-PAR/Ly-6
domain

PLAUR 5329 4251878 0.02 0 105 R Q

PLAUR 5329 4760 0.02 0.12 317 L P

PLG 5340 4252186 0 0.02 133 H Q PF00051
Kringle
domain

PROZ 8858 3024778 0 0.02 70 E K PF00594 (GLA)
domain

PTGS1 5742 10306140 0.02 0.02 149 R L PF03098
Animal haem
peroxidase

SELE 6401 3917408 0.02 0 31 M I PF00059 Lectin
C-type domain

(Continued )
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TABLE 1 (Continued )

HUGO
symbola

Locus
linkb

rs
(dbSNP)c

AA
freqd

EA
freqe

AA
Pos.f

Major
alleleg

Minor
alleleh Pfam domainsi

SELE 6401 5361 0.02 0.09 149 S R PF00008
EGF-like
domain

SELE 6401 3917429 0.02 0 550 P S

SELP 6403 3917718 0.02 0 179 G R PF00008
EGF-like
domain

SELP 6403 3917869 0 0.02 230 C F PF00084 Sushi
domain (SCR
repeat)

SERPINA5 5104 — 0.11 0.37 64 N S PF00079 Serpin
(serine
protease
inhibitor)

SERPINA5 5104 — 0 0.02 115 L P PF00079 Serpin
(serine
protease
inhibitor)

SERPINC1 462 — 0 0.02 30 V E

SFTPA1 6435 4253527 0.12 0.02 219 R W PF00059 Lectin
C-type domain

TNFRSF1B 7133 1061622 0.18 0.2 196 M R

TNFRSF1B 7133 — 0.03 0 269 T P

TNFRSF1B 7133 — 0.02 0 301 P R

TRPV5 56302 4236480 0.44 0.28 154 R H

TYK2 7297 — 0 0.09 684 I S PF00069
pkinase;
PF07714 Prot
tyr kinase

aHUGO symbol.
bLocus Link identifier.
cReference SNP cluster identifier.
dEstimated frequency in 24 African-American (AA) samples.
eEstimated frequency in 23 European-American (EA) samples.
fAmino acid position in coding sequence.
gAmino acid substitution of higher frequency allele.
hAmino acid substitution of lower frequency allele.
iProtein family.
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TABLE 2 SNPs predicted to alter translation or splicing in the SeattleSNPs
PGA and EGP data sets

HUGO namea Type of variant Codonb Minor allele freqc

ABO Frame Shift 87 0.31

ABO Frame Shift 353 0.1

ABO Splice 0.01

BRCA2 Frame Shift 55 0.01

BRCA2 Frame Shift 2092 0.01

BRCA2 Truncation 3326 0.01

C2 Frame Shift 281 0.01

C3AR1 Splice 0.06

CD36 Frame Shift 52 0.01

CD36 Frame Shift 334 0.01

CD36 Truncation 324 0.04

CD36 Splice 0.01

CD36 Splice 0.01

CD36 Splice 0.01

CDKL1 Frame Shift 340 0.01

CYP2C9 Frame Shift 273 0.01

EDN3 Frame Shift 189 0.01

EGF Frame Shift 1136 0.03

ERCC4 Truncation 723 0.01

ESRRG Splice 0.01

EXO1 Splice 0.01

GTF2H3 Frame Shift 1 0.01

HGF Truncation 364 0.01

IL16 Truncation 572 0.19

IL17RB Truncation 484 0.05

IL19 Splice 0.01

IL2RA Splice 0.01

IL5RA Frame Shift 321 0.01

IL9R Splice 0.02

MGST1 Frame Shift 58 0.01

MGST1 Truncation 95 0.01

MGST2 Frame Shift 34 0.01

MMP19 Truncation 5 0.05

(Continued )
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TABLE 2 (Continued )

HUGO namea Type of variant Codonb Minor allele freqc

MSH6 Frame Shift 1358 0.01

MYBPC3 Truncation 70 0.01

NEIL1 Splice 0.01

ORC2L Splice 0.01

PLA2G4C Frame Shift 298 0.02

PLA2G4C Frame Shift 358 0.01

POLE Splice 0.01

POLI Frame Shift 160 0.01

PON1 Truncation 194 0.01

PON2 Splice 0.01

RAD21 Splice 0.01

RAD23A Truncation 11 0.01

RAD52 Truncation 346 0.03

RAD52 Truncation 415 0.05

RAG1 Frame Shift 113 0.01

SFTPA1 Truncation 242 0.01

SMUG1 Truncation 3 0.01

TAF1C Splice 0.01

TNFAIP2 Frame Shift 105 0.04

WRN Truncation 1406 0.01

XPA Frame Shift 80 0.01

aHUGO symbol.
bCodon in which cSNP occurs.
cMinor allele frequency in either 47 SeattleSNPs PGA individuals (African Americans and European
Americans combined) or 90 EGP individuals from the Polymorphism Discovery Resource Panel.

in the samples resequenced, suggesting that these SNPs may represent mutations
(defined as having a MAF < 1% in the general population). A few of these SNPs
are common, such as the nonsense SNP in IL16 (Table 2), which has a MAF of
0.15 in the African-American sample and 0.22 in the European-American sample.

The final class of SNPs that could be considered for direct candidate gene
association studies is the regulatory SNP group. These SNPs could include any SNP
that affects regulation of gene expression without changing an amino acid of the
protein. Typically, SNPs that occur in the promoter or untranslated regions (UTR)
of the gene are likely candidates for SNPs that affect gene expression because it is
assumed that disruption of the promoter could affect transcription factor binding
or disruption of the UTR sequence could affect mRNA stability, translation, or
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transportation to other components of the cell (e.g., 44). In the SeattleSNPs PGA
and EGP data sets, we have identified 566 and 2060 SNPs in the 5′ and 3′ UTRs,
respectively, that could be considered candidates for being regulatory SNPs.

Although the UTRs of genes are obvious candidates for regulatory SNPs, this
class of SNPs can also be extended to include exonic or intronic SNPs that were
once thought to be neutral polymorphisms. Shen et al. (90) demonstrated that
synonymous cSNPs can alter mRNA structure, which may affect many downstream
processes such as splicing, processing, and even translation. In another example,
a synonymous SNP in exon 14 of the APC gene causes exon skipping and is
associated with Familial Adenomatous Polyposis (64). The “silent” cSNP in APC
is one of a growing list of synonymous SNPs that alter splicing (reviewed in 11).
Finally, an intronic SNP in the programmed cell death 1 (PDCD1) gene alters the
binding site of the runt-related transcription factor 1 (RUNX1) and is associated
with systemic lupus erythematosus (77).

Seemingly, any SNP could be a regulatory SNP. The challenge, of course, is to
identify the regulatory SNP among the neutral SNPs so that the regulatory SNP can
be genotyped in a candidate gene association study. Currently, most computational
tools concentrate on predicting whether or not a nsSNP is deleterious; however, a
few tools exist that predict regulatory SNPs. Current tools have taken several ap-
proaches to mining vast amounts of experimental and sequence data available in the
public domain. For example, the database TRANSFAC contains curated eukaryotic
transcription factor and DNA binding specificities from the literature (114), and the
Eukaryotic Promoter Database (EPD) contains eukaryotic polymerase II promot-
ers experimentally derived from transcriptional start sites (86). Many algorithms
that predict transcriptional binding sites rely on the observation that transcrip-
tional control is generally conserved across species. These algorithms [ConSite
(85), CORG (30), PromoLign (117), rVISTA (60), and TraFaC (48)] use human-
mouse orthologous sequence alignments as well as other cross-species alignments
to identify putative transcription factor binding sites and other cis-regulatory el-
ements. Other tools, such as the web-based PupaSNP (24) and ESEfinder (12),
include the prediction of exonic splicing enhancers as potential functional SNPs.

Approximately 50% of the human genomic sequence is repetitive, and only 5%
is predicted to be coding (46). Nearly half of the human genome has no known
function. Recognizing the need to further annotate the list of functional SNPs, the
National Human Genome Research Institute at the National Institutes of Health
recently launched a collaborative project entitled the “Encyclopedia of DNA Ele-
ments” or ENCODE (21). The goal of ENCODE is to identify all the functional
elements of the human genome. To do this, diverse yet complementary computa-
tional and experimental approaches will be developed in a high-throughput manner.
Already, computational comparisons of genome sequences across species, such as
the mouse/human comparison where 40% of the human sequence aligns to the
mouse sequence (66), have identified interesting conserved noncoding regions
that are candidates for being regulatory regions in the human genome (reviewed in
63, 71, 94). Ideally, ENCODE would also include high-throughput experimental
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approaches that would confirm functional elements identified through compu-
tational approaches. Traditionally, these experimental approaches include DNA
footprinting, gel shift assays, deletion constructs, DNASE I hypersensitivity stud-
ies, and gene trapping (including promoter and enhancer trapping) (reviewed in
31, 71). All of these approaches are time intensive at the single gene level and will
require further attention to make them amenable for high-throughput identification
of functional DNA elements in the human genome.

ASSOCIATION STUDIES AND SINGLE NUCLEOTIDE
POLYMORPHISMS: THE “INDIRECT” APPROACH

The “indirect” approach to genetic association studies differs from the direct ap-
proach described above in that the causal SNP is not assayed directly. The indirect
approach is much like a linkage study in that the study design assays many presum-
ably neutral markers and makes no assumption on the location of the causative gene
or locus. Linkage studies are family based and rely on recombination events within
the pedigree to narrow the genomic region that contains the causative gene seg-
regating within the families being studied. The indirect genetic association study
is most often a case-control study drawn from the general population. Although
this review focuses on indirect candidate gene association studies, this approach
can be used to interrogate whole genomes and genomic regions (reviewed in 8).
Like a linkage study, the indirect approach also relies on recombination to narrow
the genomic region related to the phenotype. The difference is that an association
study, because it is drawn from a population, uses a measure of allelic associa-
tion or site correlation, known as linkage disequilibrium (LD), to detect historical
recombination. The assumption is that the assayed or genotyped SNPs will be in
LD or associated with the causative SNP; thus, the assayed SNP would be over-
represented among cases compared with controls because it is highly correlated
with the disease-causing SNP.

The success of an indirect association study, whether at the whole genome
or candidate gene level, hinges on several assumptions and parameters. The first
assumption is that the disease or phenotype in question has a strong (or measurable)
genetic component. The average gene in our SeattleSNPs PGA and EGP data set
contains approximately 126 SNPs, of which most are neutral polymorphisms.
Therefore, the presence of genetic variation alone (or even extremely high or low
levels of variation) does not provide evidence that a phenotype associated with the
candidate gene has a strong genetic component. The evidence for a strong genetic
component is usually derived from twin studies and family studies. Although these
studies are popular and important sources of evidence, it is important to realize that
heritability estimates depend on the population being studied as well as the time
and location of the study (reviewed in 65, 109). Also, it is often incorrectly assumed
that strong heritability indicates that there is a single major gene underlying the
disease or trait. Finally, most studies estimating heritability are biased in that
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they overestimate the effects of major genes. These limitations on our ability to
estimate the strength of the genetic component could have a significant impact on
our ability to design the optimal study to detect disease-susceptibility loci for a
given phenotype.

A second assumption commonly made at the onset of study design is that, for
a given common human disease, only a few common variants are associated with
it (14, 22, 56). A few examples exist in which “common” variants are consis-
tently associated with a common disease phenotype [e.g., CARD15 and Crohn’s
disease (45); APOE and Alzheimer’s disease (33)]. However, some investigators
argue that not all common human disease can be attributed to a few common vari-
ants, and that it is more likely that several rare variants at several sites (genetic
and allelic heterogeneity) could result in the phenotypes being studied (74, 75,
112). To further complicate matters, the notion of “common” is arbitrary, with
some investigators defining this as an allele with >20% MAF and others defin-
ing this as an allele with >1% MAF. This seemingly arbitrary decision to limit
the set of potential SNPs (usually on the basis of genotyping costs and effort) to
those with a certain allele frequency may have serious consequences on the power
of the study to detect a difference between cases and controls. Recent work has
established that the most efficient and powerful studies that can detect disease-
susceptibility alleles are those in which the allele frequency differences between
the genotyped SNP and the disease-causing or -susceptibility SNP are small (re-
viewed in 119). If the difference in allele frequencies between the genotyped SNP
and the disease-causing SNP is large, especially in the case where the disease-
causing SNP is rarer than the genotyped SNP (51), it is likely that only studies
searching for genetic determinants of large phenotypic effects will be successful
(119).

A third assumption made in designing indirect association studies is that there
will be useful levels of LD within the genomic region of the population studied
and that these levels of LD can help determine which and how many markers
should be genotyped in the study. In general, regions of the genome with large
stretches of LD are desirable in an association study because fewer markers have to
be genotyped; however, these regions become less desirable when the investigator
tries to tease the disease-causing SNPs from the other SNPs in LD with it (76, 80).
Despite the double-edged sword effect of LD, there is great interest in describing
LD properties across the genome and developing strategies to choose SNPs for
genotyping based on these patterns.

Using the resequencing data generated across the 510 SeattleSNPs PGA and
EGP data sets, we can describe LD across candidate genes using the measure
r2 (Figure 2). Pair-wise LD can also be measured using D′, which is useful in
describing historical recombination in a sample. The r2 measure is preferred in this
context because there is an inverse relationship between this measure and the power
to detect an association (reviewed in 76, 110). As demonstrated in Figure 2a,b,c,
the strength of LD can vary dramatically across candidate genes. For example, for
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two similar-sized genes, TGFB3 (∼24 kb) and IL1R2 (∼23 kb), the strength and
extent of LD is different even within the same European-American sample (Figure
1a,c). The strength and extent of LD is also different within the same gene but
across population samples (Figure 2a,b). The difference in LD patterns between
populations can be an asset in specific situations where the phenotype is the same
between the two populations, but the levels of LD are different so that an association
can be detected with a minimal number of markers, but the causative SNP could also
be identified (61, 118). This is a strategy that essentially circumvents the double-
edged sword effect often observed with studying genotype-phenotype correlations
in only one population.

The strength and extent of LD is influenced by several factors. It is well doc-
umented that LD decays with increasing physical distance (1, 3). Also, African-
descent populations typically have less LD or shorter-ranged LD compared with
European-descent populations due to differences in population history (35, 38, 53,
79, 84, 87, 93, 106). This is also evident in our SeattleSNPs PGA candidate gene
set. Other population structures, such as isolated populations (54) and recently ad-
mixed populations (13), are predicted to have long stretches of LD compared with
other populations, although there is evidence that contradicts these predictions
(32, 59).

Another factor that influences the structure of LD is natural selection. Evi-
dence for natural selection can be assessed in sequence data using several statistics
that summarize the allele frequency distribution within samples for the region
of interest. One such popular test statistic is Tajima’s D, which tests departure
from neutrality using two measures of nucleotide diversity (103). Figure 3 plots
the values of Tajima’s D for 180 SeattleSNPs genes calculated for the African-
American and European-American samples. The average Tajima’s D is –0.51 in
the African-American sample and 0.18 in the European-American sample. For the
European-American sample, a few genes have Tajima’s D values >2 or ≤2 (Figure
3), values that may be considered extreme for this test statistic. A large negative
Tajima’s D indicates that the gene has an excess of rare variants, suggesting the
gene has experienced positive selection. A large positive Tajima’s D indicates the
gene has an excess of intermediate-frequency alleles, suggesting the gene has ex-
perienced balancing selection. Both these extremes in Tajima’s D, however, can
be explained by population demography or history; therefore, a more careful ex-
amination of these values must be performed before conclusions about departures
from neutrality can be made for these genes (2).

Finally, another major factor influencing the structure of LD is recombination.
The relationship between the strength of LD and the amount of recombination is
evident at both the candidate gene level (e.g., 17) and the genome-wide level. For
example, in a detailed study of chromosome 22 in European-American samples
(ascertained from available Center d’Etude du Polymorphisme Humain samples),
Dawson et al. (29) demonstrated that LD tends to be strongest in areas of little or
no recombination, in addition to decaying as the physical distance increases. Also,
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Clark et al. (16) examined 4833 SNPs typed in 538 clusters across the human
genome and identified a negative correlation between the LD metric r2 and the
recombination rate ρ.

Collectively, all of these factors (population history, natural selection, and re-
combination) make it difficult to predict a priori which regions of the human
genome will have levels of LD acceptable for genetic association studies. Despite
this limitation, several groups are optimistic that the human genome can be de-
scribed based on patterns of LD. Both candidate genes (101) and regions in the
human genome (27) have been described as having regions of high LD (termed
“blocks”) separated or punctuated by regions of low LD, presumably caused by
hot spots of recombination. The “haplotype blocks” contain a few common hap-
lotypes accounting for most of the chromosomes assayed (27). Gabriel et al. (36)
formalized the definition of haplotype blocks and demonstrated that haplotype
blocks existed across the human genome in several different populations, although
African-descent samples had a greater number of short blocks compared with
non-African-descent samples.

Studies on haplotype block structure (36, 70) were immediately influential be-
cause they provided the framework from which to choose SNPs for genotyping in
a genetic association study (49). These data also provided impetus for the Interna-
tional HapMap Project, an international collaborative effort designed to describe
LD across the human genome in several populations and the tagSNPs needed to
capture genetic diversity that can be applied in future genetic association stud-
ies (105). However, since the publication of these findings, several investigators
have demonstrated that, even though hot spots of recombination may be a com-
mon feature of the human genome (25, 62), haplotype blocks can exist without
their presence (73, 111). Furthermore, studies show that the number and size of
haplotype blocks depend on marker density (50, 98), the MAF cutoff imposed
on the data set (88, 100), and block definition (89). These recent findings will no
doubt increase the usefulness of the International HapMap Project as researchers
investigate new avenues to describe LD and genetic diversity across the human
genome and ways to apply this knowledge in well-designed genetic association
studies.

As the genetics community waits for the whole-genome association study re-
sources to be developed by the HapMap, many investigators are continuing work
on candidate genes in association studies. Several useful algorithms have been
developed to choose SNPs for genotyping that can be applied to candidate genes.
Most algorithms available today are based on choosing SNPs that represent com-
mon haplotypes (usually defined as having a frequency of >5% in the sample)
or maximize haplotype diversity within blocks (49, 99, 116). The disadvantage
of this approach is that these algorithms require haplotypes. To date, most haplo-
type data represent inferred haplotypes, not molecularly determined haplotypes.
It is clear that genomic regions with high haplotype diversity are difficult to phase
correctly (68) and that, no matter the algorithm used, a fraction of the inferred
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haplotypes is incorrect (97). Also, we recently showed in the SeattleSNPs PGA
data set that the number of inferred haplotypes per gene varies substantially across
genes and between populations (26) (Figure 4). For example, the average num-
ber of inferred haplotypes per gene is 34 for the SeattleSNPs PGA and 38 for
the EGP (Figure 4a). In contrast, the range for the number of haplotypes per
gene is quite broad: 7 to 94 in the SeattleSNPs PGA and 2 to 175 in the EGP
(Figure 4a). Also, as shown previously (4, 26), the average number of haplo-
types per gene, as well as the range of haplotypes per gene, is greater in the
African-American sample compared with the European-American sample: 25 ver-
sus 15 (Figure 4b). In general, the larger genes have the most haplotypes because
there is a positive correlation between the increasing number of SNPs and the
increasing number of haplotypes. However, there are always exceptions, such as
CCND2, a gene with 100 inferred haplotypes that is only 33.5 kb in size and
contains 48 SNPs with MAF ≥ 5%. We found that haplotype diversity was high
in a few genes such that no common haplotypes (>5% frequency) were inferred
for that sample (26). These data demonstrate that a proportion of genes have high
haplotype diversity, perhaps making them less amenable to haplotype tagging
approaches.

One tagSNP selection algorithm that does not require the inference of hap-
lotypes across the entire gene is LDSelect, an algorithm that groups correlated
SNPs from genotype data using linkage disequilibrium (10). At an empirically
determined r2 threshold of 0.64 and a minor allele frequency ≥5%, we identified
3709 and 1807 tagSNPs for genotyping in the African-American and European-
American samples, respectively, across 180 genes in the SeattleSNPs PGA data set.
The average number of tagSNPs per gene is 21 for the African-American sample
and 10 for the European-American sample. Even though twice as many tagSNPs
must be genotyped on average for the African-American sample compared with the
European-American sample at this particular r2 threshold, the number of SNPs re-
quired for genotyping represents a great savings because the tagSNPs only account
for 36% of the total number of SNPs with MAF ≥ 5% in the African-American
sample.

One important aspect of any tagSNP algorithm is the fact that a set of tagSNPs is
population specific. That is, tagSNPs determined for a European-descent sample
should not be applied to an African-descent population. Also, tagSNPs should
not be determined in a stratified or mixed population (such as the Polymorphism
Discovery Resource Panel) and then applied to a defined population. There is
evidence, however, that tagSNPs can be chosen in one sample and applied in
another sample of similar race/ethnicity (51). The difference across tagSNPs sets
for different populations stems, in part, from differences in population history.
As discussed above, it is well known that LD patterns differ across populations.
The number of SNPs is different between two populations, with African-descent
populations typically having the most variants compared with other populations.
Also, a previous analysis of the SeattleSNPs PGA data set demonstrated that
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minor allele frequencies for the same sites can differ dramatically across different
populations (9). Thus, a common SNP in one sample may not necessarily be a
common SNP in a second sample that differs by race/ethnicity.

VASCULAR CELL ADHESION MOLECULE 1 (VCAM1):
AN AVERAGE GENE IN AN AVERAGE STUDY

This review has described two basic approaches for candidate gene association
studies: direct and indirect. As a working example of these approaches, we apply
the concepts described above to a SeattleSNPs PGA gene, vascular cell adhesion
molecule 1 (VCAM1). VCAM1 is a member of the immuoglobulin gene superfamily
induced by cytokines, and its upregulation has been noted at atherosclerotic lesions
in mice (28). VCAM1 is located at 1p32-p31 and is approximately 22.8 kb in
size. Resequencing VCAM1 in 47 individuals revealed 113 unique SNPs, 102 of
which are present in the African-American sample and 39 of which are present
in the European-American sample. The nucleotide diversity (π ) of VCAM1 is
6.55 × 10−4 and 3.93 × 10−4 for the African-American and European-American
sample, respectively, and Tajima’s D is negative in the African-American sample
and positive in the European-American sample (–1.26 × 10−4 and 0.03 × 10−4,
respectively). Of the 113 total SNPs, 43 have a MAF ≥ 5% (48 in the African-
American sample and 23 in the European-American sample).

For a direct association study approach, we are interested in genotyping func-
tional SNPs within VCAM1. VCAM1 contains six SNPs in the coding region. For
the six cSNPs, two are synonymous and four are nonsynonymous. One of the
nsSNPs, S318F (African-American MAF = 0.02; European-American MAF =
0.00), is predicted by PolyPhen to be possibly damaging/intolerant, making it
a candidate for a direct association study. In examining the promoter region of
VCAM1, we find a total of 10 SNPs within 2 kb of the start of transcription. We
used Alibaba2.1 (see Electronic Databases) to identify SNPs occurring within pre-
dicted transcription factor binding sites (39). Among these promoter SNPs, four
occur within predicted transcription factor binding sites. Specifically, an T/C SNP
–833 bp, T/G SNP –1599 bp, C/T SNP –2021 bp, and A/C SNP –2062 bp from the
start of translation are predicted to fall within a Oct-1 or HNF-3 or C/EBP alpha,
AP-1, Oct-1, and an ICSBP transcription factor binding site, respectively. There-
fore, these SNPs should also be considered for an association study because it is
possible that they have a functional effect by influencing the binding of transcrip-
tion factors to the promoter region, resulting in allele-specific levels of VCAM1
gene expression.

For an indirect association study approach, we are interested in genotyping
SNPs that are either the causative SNP or the SNP in LD with the causative
SNP. Using LDSelect (10) with an r2 threshold of 0.64 and a MAF threshold
of ≥5%, we would choose 30 tagSNPs for the African-American sample and
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11 tagSNPs in the European-American sample for genotyping in VCAM1. Alter-
natively, we could employ a haplotype tagging approach to choose tagSNPs. At
a MAF ≥ 5%, the African-American sample has 44 inferred haplotypes and the
European-American sample has 22 inferred haplotypes (PHASEv2.1; see Elec-
tronic Databases). Using the default settings for the D′ block definition in Hap-
loBlockFinder (116), 29 tagSNPs in the African-American sample and 7 tagSNPs
in the European-American sample were identified from inferred haplotypes in
VCAM1 for genotyping.

CONCLUSIONS

We demonstrate here that much has been uncovered about the patterns of human
gene variation through recent DNA variation discovery efforts. However, much
remains to be learned about how these patterns can be applied to human genetic
association studies to identify the loci involved in common human diseases. The
data presented here suggest that specific approaches and methods may be appro-
priate for a proportion of the genes in the human genome, but may not be powerful
or appropriate for other genes. This realization that one method does not fit all
genetic association studies should stimulate creative thinking for alternative ap-
proaches to applying DNA variation in association studies so that the successes
of the Human Genome Project will translate into successes of genomic medicine
and public health for all populations.
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SNPS IN HUMAN GENES C-1

Figure 1 GeneSNPs view of VCAM1. VCAM1, a typical gene resequenced by the
SeattleSNPs PGA, is located on 1p32-p31 and is �22.8 kb long. VCAM1 was resequenced
in 47 individuals and has 113 single nucleotide polymorphisms (SNPs). Six of the SNPs
are coding SNPs, of which two are synonymous and four are nonsynonymous. The
GeneSNPs view of each gene, including VCAM1 in this figure, displays exons (purple
boxes), introns (gray), and untranslated regions (green) by color. The vertical lines repre-
sent SNPs, and the lengths of the vertical lines represent the minor allele frequency for the
SNP. Each SNP is color coded to represent the location of the SNP within the gene: flank-
ing sequence (black), intron (brown), exon (red for nonsynonymous and yellow for syn-
onymous), and untranslated region (green). 
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Figure 2 (Continued)
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SNPS IN HUMAN GENES C-3

Figure 2 (Continued)
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C-4 CRAWFORD ■ AKEY ■ NICKERSON

Figure 2 The strength of pair-wise linkage disequilibrium (LD) varies dramatically across
candidate genes and across different population samples. Pair-wise LD is measured using
VG2, software that measures LD with r2 or D�. Here, we measured LD using r2 for all sin-
gle nucleotide polymorphisms (SNPs) with a minor allele frequency of �5%. The strength
of LD is depicted graphically for each pair-wise comparison (squares), such that white and
blue represent low levels of LD and orange and red represent high levels of LD (see color
key). The numbers along the triangle represent the SNPs, which are numbered according
to a reference sequence. (a) LD across TGFB3 in European Americans (n = 23). (b) LD
across TGFB3 in African Americans (n = 24). (c) LD across IL1R2 in European Americans
(n = 23).
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SNPS IN HUMAN GENES C-5

Figure 3 Tajima’s D calculated across 180 SeattleSNPs candidate genes for African
Americans and European Americans. Each square represents Tajima’s D for a gene in the
African-American sample (red) and the European-American sample (blue). Tajima’s D was
calculated using the methods of Tajima (103), and genes that have a Tajima’s D of �2 or
�2 are labeled with the gene name.
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Figure 4 Haplotype diversity across 510 candidate genes. Haplotypes were inferred using
PHASEv2.1 for all single nucleotide polymorphisms (SNPs) with a minor allele frequen-
cy �5%. (a) Haplotypes were inferred in the SeattleSNPs PGA samples (African and
European Americans; n = 47) and EGP samples (Polymorphism Discovery Resource sam-
ple; n = 90). The dashed line represents the average number of haplotypes per gene for the
SeattleSNPs data set (green; 34) and the EGP data set (orange; 38). (b) Haplotypes were
inferred separately for African-American samples (red; n = 24) and European-American
samples (blue; n = 23) in the SeattleSNPs PGA data set. The dashed line represents the
average number of haplotypes per gene for African Americans (25) and European
Americans (15). 
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