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The near completeness of human chromosome sequences is facilitating accurate characterization and
assessment of all classes of genomic variation. Particularly, using the DNA reference sequence as a
guide, genome scanning technologies, such as microarray-based comparative genomic hybridization
(array CGH) and genome-wide single nucleotide polymorphism (SNP) platforms, have now enabled the detec-
tion of a previously unrecognized degree of larger-sized (non-SNP) variability in all genomes. This heterogen-
eity can include copy number variations (CNVs), inversions, insertions, deletions and other complex
rearrangements, most of which are not detected by standard cytogenetics or DNA sequencing. Although
these genomic alterations (collectively termed structural variants or polymorphisms) have been described
previously, mainly through locus-specific studies, they are now known to be more global in occurrence.
Moreover, as just one example, CNVs can contain entire genes and their number can correlate with the
level of gene expression. It is also plausible that structural variants may commonly influence nearby
genes through chromosomal positional or domain effects. Here, we discuss what is known of the prevalence
of structural variants in the human genome and how they might influence phenotype, including the conti-
nuum of etiologic events underlying monogenic to complex diseases. Particularly, we highlight the newest
studies and some classic examples of how structural variants might have adverse genetic consequences.
We also discuss why analysis of structural variants should become a vital step in any genetic study going
forward. All these progresses have set the stage for a golden era of combined microscopic and sub-
microscopic (cytogenomic)-based research of chromosomes leading to a more complete understanding of
the human genome.

INTRODUCTION

In the past few years, several studies have identified a pre-
viously uncharacterized prevalence of structural variants of
DNA along chromosomes in the size range of 1kb or
greater, adding to the catalog of variants in the human
genome (Table 1). Namely, sub-microscopic (usually less
than ~3 Mb) copy number variations (CNVs) and inversions
have been found to occur in every genome studied at high fre-
quencies when compared with the equivalent classes of cyto-
genetically detectable rearrangements (1—8). Similar findings
are also now being made more readily in disease gene studies.

These discoveries have come somewhat later than the
description (and generation of comprehensive maps) of

single nucleotide polymorphisms (SNPs) (9,10), microsatel-
lites (11,12) and minisatellites (13), as well as catalogs of
cytogenetically detectable heteromorphisms and rearrange-
ments, because of limits of resolution in the technology at
that time. However, new developments in genome-wide scan-
ning methodologies using genomic clone and oligonucleotide-
based arrays occurring in parallel with the availability of a
reference human genome sequence now provide opportunity
to generate advanced maps of structural variation in world-
wide populations. Moreover, next generation sequencing tech-
nologies and computational comparisons of sequences from
different sources will yield a vast number of variants primarily
in the <1 kb size range that have not been described pre-
viously. Comprehensive reviews describing the discovery
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Table 1. Genetic variation in the human genome

Variation type

Definition

Frequency (if known) in the human genome

References

SNP

Insertion/deletion variant (InDel)

Microsatellite (e.g. CA,, repeats)

Minisatellite and variable numbers of
tandem repeats (VNTRs)
Multisite variant (MSV)

Intermediate-sized structural variant
(ISV)

CNV; copy number polymorphism
(CNP); large-scale CNV

Inversion

Translocation

Unbalanced rearrangements

Single base pair variation found in >1% of
chromosomes in a given population

Deletion or insertion of a segment of DNA.
Includes small polymorphic changes and
large chromosomal aberrations. InDels
>1 kb in size are often also called CNVs

Sequences containing variable numbers of
1-6 bp repeats totaling <200 bp in length

Polymorphic sequence containing 20—50
copies of 6100 bp repeats

Single nucleotide variant with complex
characteristics due to CNV or gene
conversion

Gain or loss of a DNA sequence >8 kb in
size also includes inversion breakpoints

Copy number change >1 kb. If the fre-
quency is > 1%, it is called a CNP. LCVs
are CNVs ~50 kb in size or greater

Rearrangement causing a segment of DNA to
be present in reverse orientation

Rearrangement in which a DNA fragment is
attached to different chromosome

Rearrangements which lead to a net gain or
loss of DNA are referred to as unbalanced

~10 million SNPs in the human population

~1 million insertion/deletions polymorph-
isms >1 bp in the human genome

>1 million microsatellites in the human
genome, accounting for ~3% of the
sequence

~150 000 minisatellites, of which ~20%
are polymorphic

The number of MSVs is currently unknown

297 ISVs were identified using a fosmid
library from a single genome

The frequency of CNVs in the human gen-
ome is unknown. Estimates of larger
CNVs (>50 kb)

Estimates of microscopically detectable
inversion frequencies are 0.12-0.7%
(pericentric) and 0.1-0.5% (paracentric);
sub-microscopic unknown

1/500 is heterozygous for a reciprocal trans-
location and 1/1000 for Robertsonian
translocations

Unbalanced rearrangements occur in
~1/1500 live births

(112-114)

(115,116)

(114,117,118)

(13,119,120)

(121)

(4)
(1,2,19)

(122,123)

(122-124)

(125)

and properties of, in particular, CNVs, but also other structural
variants, have been published recently (14—19). Here, we
highlight the latest findings, with a particular emphasis on
the new sub-microscopic variants being increasingly described
in the ~1 kb to ~3 Mb size range and how they may influence
phenotype or be involved in disease.

STRUCTURAL VARIATION INFLUENCING
PHENOTYPE

Changes in DNA that affect gene function (often through
affecting dosage) can have a deleterious effect on the repro-
ductive fitness of an organism, and in some cases represent
lethal mutations. In these circumstances, the variants would
eventually be destined to disappear, but they can often exist
in a heterozygous form for many generations. In between
these extremes of selectively neutral variants and lethal
mutations lie variants that can influence physiological, bio-
chemical, morphological and pathological variation in the
human population. Recent descriptions of numerous ‘gene-
sized” (the average size of a gene being ~70kb) sub-
microscopic structural variants in all genomes have generated
significant excitement in the field (20—25), because (i) it was
presumed they probably should exist for the same reasons as
SNPs and microscopic variants; (ii) their sheer size (often
affecting hundreds to thousands of nucleotides of DNA)
increases the likelihood that the alteration is, in fact, a
genomic lesion explaining disease outcomes; (iii) as such,
some will also be shown to predispose to disease either
directly or in combination with other variants and factors

and (iv) some will provide substrate for evolutionary change.
The description of all variants will be important for many
wide-ranging reasons, better resolving a more completely
annotated reference genome sequence to understanding impli-
cations in pharmacogenomics and clinical diagnostic testing.

It has been well established in many classic (26—33) as well
as in more recent studies of monogenic disease (34), oligoge-
netic disease (35—41), and most recently in complex disease
that the study of such chromosome rearrangements can be
the most rapid approach to identify candidate susceptibility
loci and genes (that then need to be confirmed in other
samples). For complex diseases (note that in some cases,
these were the Mendelian sub-forms of complex disease
demonstrating the same phenotypic endpoint), examples
include: in autism, X-chromosome deletions led to the identi-
fication of the neuroligin NLGN3 and NLGN4 genes (42); in
schizophrenia, a familial chromosome 1 translocation led to
the discovery of the DISCI and DISC?2 genes (43); in dyslexia,
distinct chromosomes 3 and 15 translocations led to the dis-
covery of ROBOI and DYXCI, respectively (44,45); in
severe speech and language disorder, a chromosome 7q31
translocation pinpointed the FOXP2 gene (46); in Tourette
syndrome, a de novo inversion led to SLITRKI involvement
(47); in severe expressive language delay, microduplication
of the Williams—Beuren syndrome locus on chromosome
7q11.23 (48) and in early onset Parkinson and Alzheimer’s
disease, duplications of SNC4 and APP on chromosomes 4
and 21, respectively, have been shown to be causative (49,50).

Indeed, the primary message of this review is to increase the
awareness of the necessity for including steps for screening
for structural variants in genetic experiments. This was
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Figure 1. CNV influencing gene dosage and expression and disease. There are a number of mechanisms by which CNVs potentially could have an effect on gene
expression and phenotypic traits. Well-documented examples involve regions with multiple genes deleted in microdeletion syndromes and microduplication
syndromes (A), where there is a direct correlation between genotype and phenotype. Copy number polymorphisms where a gene is located entirely within a
region that varies in copy number (B) have also been described to show a direct correlation between gene copy number and gene expression. Another mechanism
by which CNVs may have an influence on disease phenotype is if the remaining copy harbors a risk allele that becomes apparent only in the hemizygous state
(C). The opposite scenario may also occur, with an increased number of copies harboring a risk allele, causing a concurrent increase in disease susceptibility. It
can also be hypothesized that CNVs may affect gene expression without directly changing the gene copy number. Gains or losses affecting the regulatory
elements or promoter regions can also be important contributors to differences in gene expression. This could involve either loss of an element of transcriptional
regulation (D and F) or a loss/gain changing the structural properties of DNA inhibiting enhancer interaction, chromatin structure or access of transcription
factors to their binding sites (E). Interaction and additive models with any of these scenarios combined or in combination with any type of variation at other
loci can be expected to be the cause of more complex genetic traits.

detectable and smaller These

exquisitely demonstrated in a recent study showing that copy
number polymorphism in the FCGR3 gene predisposes to glo-
merulonephritis in humans and rats (51). Preliminary data
suggest that dozens of CNVs alone will be found in a given
genome when assessed using comprehensive scanning method-
ologies. The sub-microscopic variants will be intermediate in
size and frequency in comparison to occurrence of cytogenetically

(<1kb) polymorphisms.
aberrations can be hundreds of kilobases long, having important
implications for the potential effect they may exert on genes
and transcriptional regulation (Fig. 1). Moreover, a large
number of CNVs have been shown to contain one or more
entire coding transcripts (1,2,52,53). In studies where these
genes have been characterized, there seems to be a direct



R60

Human Molecular Genetics, 2006, Vol. 15, Review Issue 1

Table 2. Selected recently published examples of potential position effects caused by structural variants

Indication OMIM Locus Gene(s) Distance from Type of rearrangement Effect on gene(s) Reference Comments
involved gene
Severe speech 608636 7q31.1  FOXP2 At least 680 kb 5’ Balanced translocation Postulated down- (70)
and language regulation
disorder
Blepharophimosis 110100 3g22.3 FOXL2 101-231kb5; Four different microdeletions Postulated down- (101)
syndrome (BPES) 28.7kb 3’ (126 kb to 1.9 Mb in size) regulation
; 188 kb microdeletion 3’
Campomelic 114290 17q24.3 SOX9 400 and 900 kb Two balanced translocations  Postulated down- (82,83) Mild acampomelic
dysplasia 5’5 1.3 Mb and one complex balanced regulation phenotype in two
down-stream translocation patients
(complex case)
Peter’s anomaly 604229 1qg41 TGFB2 500 kb 3’ Balanced translocation Postulated down- (98)
regulation
Potocki—Shaffer 601224 11pll.2 ALX4 >15kb 3’ ~1.37 Mb deletion Postulated down- (100) Atypical phenotype
syndrome regulation (parietal foramina)
Short stature 312865 Xp22.33 SHOX  250-350 kb 5’ Ring (X) with deletion of Postulated down- (104) Multiple other genes
700—900 kb of Xp and Xq regulation deleted
pseudoautosomal regions
Spastic paraplegia 312920 Xq22.2 PLPI 135-185kb 3’ 100—150 kb duplication Postulated down- (102,126) Unusual phenotype;
type 11 with axonal regulation PLPI duplications
neuropathy and deletions lead
to Pelizacus—
Merzbacher
syndrome
Townes—Brocks 107480 16ql2.1 SALLI ~ >180kb 5 Balanced translocation Postulated down- (127)
syndrome regulation
X-linked recessive 307700 Xq27.1 SOX3 67 kb 3’ Deletion of ~25 kb with Postulated down- (99)
hypoparathyroidism insertion of ~340 kb regulation

correlation between increases in gene copy number and increased
levels of mRNA (53—56). Polymorphic deletions containing
entire genes have also been described, where a fraction of the
population are homozygous for the deletion allele and, therefore,
do not have the gene present in their genome (6,8,57). Most of the
genes in this category belong to gene families or are recently
duplicated in evolutionary history, and this may increase the tol-
erance for null alleles.

Specific categories of genes seem over-represented in CNVs
including those important for interaction with the surrounding
environment, such as olfaction and response to external
stimuli (19,58). Examples of such polymorphic genes include
glutathione S-transferase genes (59,60), cytochrome P450
genes (61-65) and the complement component C4 (66). In
each case, changes to gene copy number have been shown to
give rise to concomitant changes in the level of enzyme
activity, with phenotypic consequences. Another example is
the CCL3L1 gene, where the increased copy number has been
shown to be protective against HIV infection (56).

Inversions represent another class of structural variation
(Table 1), but knowledge of their prevalence in the human
genome is more limited. This is partly due to a lack of technol-
ogies for robust and inexpensive discovery of such balanced
rearrangements. In addition, preliminary data indicate that
inversion variants are less abundant than CNVs in the
human genome (4). However, there are a number of well-
documented cases where inversion variants can be associated
with disease predisposition, primarily in microdeletion syn-
dromes. In these instances, the inversion variant need not be
a direct cause of the disease, but instead it can act as a risk
factor for microdeletion to occur in the offspring, as appears

to be the case in Williams—Beuren (67), Angelman (68) and
Sotos syndromes (69).

POTENTIAL LONG-RANGE (POSITION) EFFECTS
OF STRUCTURAL VARIANTS ON GENES

As discussed, structural variants can affect dosage by directly
interrupting genes, but it is important to appreciate that they
can have an equivalent effect at a distance (in an indirect
manner) (Fig. 1). Although genes only represent a small
portion (<3%) of the human genome and there are hundreds
of putative ‘gene deserts’, sometimes millions of base pairs
in size (70—72), there is now substantial evidence that regulat-
ory elements of genes can reside up to a million base pairs or
more away (Fig. 1; Table 2) (Supplementary Material,
Table S1). Thus, structural variants cannot be presumed to
be selectively neutral because they encompass only non-
coding segments, but instead a careful assessment of nearby
genes that may be affected via a ‘position effect’” mechanism
also needs to be considered.

Position effect refers to the alteration of a gene’s expression
pattern as a result of a change in its genomic location or chro-
matin environment. This phenomenon has been most exten-
sively studied in Drosophila (73) and yeast (74), but an
increasing number of examples in humans have been reported,
including a variety of developmental disorders such as aniridia
(75-78), holoprosencephaly (79—81), campomelic dysplasia
(82—90), thalassemias (91-94), X-Y sex reversal (95,96)
and others (Supplementary Material, Table S1). Position
effects can be caused by a variety of mechanisms. These
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include translocation of a gene into a heterochromatic region
resulting in the methylation of promoter regions and conse-
quent down-regulation of expression, chromosome breakage
(translocations, inversions, deletions and duplications) that
separates a gene from some or all of its transcriptional
control elements or otherwise alters gene expression (94), or
genomic rearrangements that bring a gene into close proximity
to a positive regulatory element (97). In recent reviews
(80,97), several additional examples of congenital abnormal-
ities resulting in either obvious or postulated position effects
in humans have been reported. Here, we call attention to
some studies from the past few years, highlighting how the
structural variants can be involved in disease through different
mechanisms of action (Table 2) (additional historical studies
are summarized in Supplementary Material, Table S1).

In most cases, the effect of genomic rearrangement on gene
expression has been inferred, rather than observed directly.
This is often due to the unavailability of appropriate tissue
or developmental timing of expression that would render
gene expression analysis impossible. As an example, a trans-
location that disrupts the HDACY gene at 7p21.1 has its reci-
procal breakpoint on chromosome 1, ~500kb from the
TGFB2 gene. The patient carrying this translocation has
Peter’s anomaly, a defect of the anterior chamber of the eye,
and as Tgfb2 null mice have very similar developmental eye
defects, and therefore, the authors consider a position effect
at TGFB2, rather than HDACY disruption, to be the most
likely underlying pathology (98). A more complex example
is a 23-25 kb deletion and 340 kb insertion at the deletion
point, 67 kb 3’ to the SOX3 gene, found in a patient with
X-linked recessive hypoparathyroidism (99). It is presumed
that down-regulation of SOX3 results in the phenotype, as
SOX3 has been observed to be expressed in the developing
parathyroid of mouse embryos.

In other recent examples, Wakui et al. (100) report a patient
with a large deletion located just 3’ of the ALX4 gene having
atypical manifestation of Potocki—Shaffer syndrome. Beysen
et al. (101) describe a number of patients with Blepharophi-
mosis syndrome (one of the syndromes most frequently
reported to be associated with position effects in humans),
each having a microdeletion near the FOXL2 gene. Lee
et al. (102) describe a patient with an atypical phenotype
(spastic paraplegia type II with axonal neuropathy) because
of a duplication near the PLPI gene, deletions and dupli-
cations of which usually result in Pelizacus—Merzbacher syn-
drome (103). Mild forms of campomelic dysplasia, a skeletal
malformation syndrome, have also been reported, as a result of
balanced translocations near the SOX9 gene in three different
patients [two with simple reciprocal translocations and one
with a complex translocation (82,83)]. Ellison ef al. (104)
report a patient with a ring (X) chromosome that is presumed
to cause a down-regulation of the SHOX gene, resulting in
short stature in that patient, although a significant amount of
Xp and Xq material is also deleted, including several other
genes. Finally, in an extreme case carrying a de novo t(6;7)
(p21.1;q36) reciprocal translocation exhibiting both holo-
prosencephaly and cleidocranial dysplasia, there are two
apparent position effect mutations in the same individual:
the 7q36 breakpoint mapping 15 kb telomeric to the 5" end
of Sonic Hedgehog causes holoprosencephaly and the 6p21.1
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Figure 2. Genetic and genomic considerations of assessing the influence of
structural variants on gene expression and phenotype/disease manifestation.

breakpoint mapping 800 kb upstream of CBFAIl (RUNX2)
causes cleidocranial dysplasia (80).

It is striking that a majority of genes reported to be affected
by apparent position effects in humans are involved in devel-
opmental syndromes. This could be due to ascertainment bias,
as phenotypes in these patients tend to be either atypical or
unusually mild. Alternatively, it could be that other classes
of genes, e.g. those encoding enzymes, are much more tolerant
to positional silencing or down-regulation and that individuals
with such rearrangements thus escape clinical notice. It has
also been suggested that large ‘gene deserts’ often found
around the developmental genes (71) may serve as enhanced
targets for chromosomal rearrangements (105). Notwithstand-
ing, the take home message from these studies and others is
that the structural variant need not only affect what we
usually define as the classical gene unit to have an effect;
proximal and distal genes also need to be considered.

MEDICAL AND BIOLOGICAL SIGNIFICANCE

With the ability to recognize dozens of sub-microscopic
variants in all genomes, a hierarchical paradigm of how to
differentiate the manifestation of disease- (or phenotype-)
associated changes needs to be considered (Fig. 2).
For example, in some cases, a structural variant correlates
directly with the disease, such as the case in dosage-related
microdeletions and duplications that cause genomic disorders
and in other cases described earlier (106). Family-based
studies can demonstrate whether a change is de novo or has
been inherited and, in the latter case, whether there are
likely to be associated phenotypic consequences. However,
there are numerous examples of lack of penetrance or variable
expression of phenotype in inherited chromosomal rearrange-
ments (107), requiring analysis be extended to a larger popu-
lation of controls. Other factors such as the genomic context
(e.g. types of genes and likelihood to be affected by position
effect), the heritable stability of the variant (it could predis-
pose to other mitotic or meiotic rearrangements), influence
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Table 3. Examples of databases and resources for studies of structural variation

Name

Host

Description

Website

Database of Genomic Variants

Human Structural Variation
Database

Database of Chromosomal
Imbalance and Phenotype in
Humans using Ensembl
Resources (DECIPHER)

Human Genome Epidemiology
Network (HuGENet)

Developmental Genome
Anatomy Project (DGAP)

Mendelian Cytogenetics Network
Online Database

Chromosome Abnormality

Database (CAD)

The European Collection of Cell
Cultures (ECACC)

Coriell Cell Respository

NIGMS Human Genetic Cell
Repository

Mitelman Database of
Chromosome Aberrations
in Cancer

The Centre for Applied
Genomics, The Hospital
for Sick Children, Toronto

Genome Sciences,
University of Washington

Wellcome Trust Sanger
Institute

Centers for Disease Control

and Prevention

Harvard University

Wilhelm Johannsen Centre
for Functional Genome
Research

NHS, UK

ECACC and the Health
Protection Agency

National Institutes of
Health (NIH)

National Institute of
General Medical Sciences

National Cancer Institute

A comprehensive summary of
human large-scale genomic
variants with information about
frequency and their relation to
genes, segmental duplications
and genome assembly gaps

A catalog of human genomic
polymorphisms ascertained by
experimental and computational
analyses

A database of sub-microscopic
chromosomal imbalances with
links to resulting phenotypes

Committed to assessing the impact
of human genome variation on
population health and how
genetic information can be used
to improve health and prevent
disease

Database of balanced chromosomal
rearrangements critical to
development

A collection of disease-associated
balanced chromosomal
rearrangements

A collection of both constitutional
and acquired abnormal karyo-
types reported by UK Regional
Cytogenetics Centers

A cell-culture collection to
service the research community
consisting of over 40 000 cell
lines representing 45 different
species

Provides essential research
reagents to the scientific
community by establishing,
verifying, maintaining and
distributing cells cultures and
DNA derived from cell cultures

Supplies scientists with the
materials for accelerating
disease gene discovery with
highly characterized, viable and
contaminant-free cell cultures
and DNA samples

Relates chromosomal aberrations
to tumor characteristics, based
on either individual cases or
associations

projects.tcag.ca/variation/

humanparalogy.gs.washington
edu/structuralvariation/

www.sanger.ac.uk/postgenomics/decipher/

www.cdc.gov/genomics/hugenet/default.htm

www.bwhpathology.org/dgap/

www.mendb.org/index.jsp

www.ukcad.org.uk/cocoon/ukcad/

www.ecacc.org.uk/

locus.umdnj.edu/ccr

locus.umdnj.edu/nigms/

cgap.nci.nih.gov/chromosomes/mitelman

of other variants and possible parent-of-origin effects (e.g.
imprinted regions) all need to be considered when evaluating
the effect at the genic level.

Databases cataloging large-scale genotype and phenotype
correlations (17,70,108) will be increasingly important to
help discern how these changes might cause phenotypic or
functional outcomes (Table 3 provides web links). For
example, the genome-wide initiatives including the Database
of Chromosomal Imbalance and Phenotypes in Humans
using Ensembl Resources (DECIPHER) and the Develop-
mental Genome Anatomy Project (DGAP) promise to bridge
the gap from DNA sequence to medical genetic outcomes,

but the databases are still sparsely populated. Other efforts,
including the Mendelian Cytogenetics Network Online Data-
base, the Chromosome Abnormality Database, the European
Collection of Cell Cultures, Coriell Cell Repositories,
NIGMS Human Genetic Cell Repository and the Mitelman
Database of chromosome aberrations in cancer, among
others, provide catalogs of samples with karyotypes and phe-
notypes. The Database of Genomic Variants and the Human
Structural Variation Database house information on structural
variants that are generally not known to cause disease. It is
also worth noting that there are large data sets of SNPs and
microsatellites from disease mapping studies (Supplementary
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Material, Tables S2 and S3) that could be analyzed for their
putative CNV content in a manner similar to what has been
done in autism (109) and HapMap samples (6,8).

CONCLUSIONS AND FUTURE STUDIES

The complexity of variation in the human genome continues
to be unraveled, providing opportunity to explain genetic
contributions to disease in a more comprehensive manner.
Going forward into the next few years, studies examining
the role of sub-microscopic structural variation will become
a predominant theme because of significant advances in tech-
nology allowing for the scanning of genomes at relatively
high resolution. In fact, on the basis of the numbers of discov-
eries and impact alone in the past 2 years, it could be argued
that we have entered a ‘cytogenomic’ era for discovery in
human genetics. In large-scale population-based whole
genome association studies (Supplementary Material,
Table S3), and in any disease gene study, a component of
assessing structural variation content should be incorporated.
However, comprehending the contribution of these variants
will require the understanding of wide-ranging data from
simple presence or absence (in cases and controls) to the pos-
ition and context in the genome (Fig. 2). It will be important
to determine the new mutation rate (25,110) of these variants
across the genome, including the heterochromatic regions.
The next frontier will be to fully catalog all the structural
variants in the ~1 kb to 3 Mb size range discussed here, but
also all other variations in the 1bp to 1kb size range
(Table 1), which will probably be best discerned through
personalized genome (re-)sequencing (111). Coupling all
of this information to large cohorts of meticulously pheno-
typed sample collections and corresponding databases would
provide insight toward understanding the etiology of many
unresolved diseases.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG Online.
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