

Rotor-Gene 3000

Real-time Amplification

CAS-1200

Liquid Handling System

Miniaturisation and Reproducibility

Reduction of running times using "Optical Denaturation"?

Reduction of the final probe concentrations to 5nM?

Minimal running volumes using the CAS-1200?

Reproducibility due to the design of the Rotor-Gene.

Heating and Cooling the Chamber

- Heated by a circular Ni-chrome element in the lid.
- Samples spin continually at 500rpm or 1000rpm.
- Cooling: a vent is opened in the top of the chamber.

Chamber Layout – Top Four Channel System

Fixed optical path length

- LED excites from the side of the chamber.
- PMT detects at the base of the chamber.
- Energy transmitted through the thin walls at the base of the tube.

Fixed optical path length ensures no variation sample to sample.

Optical Denaturation

Conventional amplification relies on setting temperatures and hold times at each step of the reaction profile.

Optical Denaturation monitors, in real time, the dissociation of product (i.e. denaturation or melt point) during an amplification reaction.

Requirements:

- Reference sample
- Optical denature profile
- Temperature uniformity of the instrument

Optical Denaturation

Conventional

Optical Denaturation

Optical Denaturation

Significant reduction of running times

Automatic detection of the reference melt point

Increased lifetime of the enzym

Temperature uniformity of the Rotor-Gene

w Melt Data - 72 Well Rotor

Differentiated Data

Sample uniformity

Calibration Rotor

The calibration rotor is supplied pre-loaded with 0.1mL tubes that are fixed and cannot be removed. The rotor is placed into the Rotor-Gene and a melt template is run to produce three distinct melt curves. These curves are analyzed to generate a temperature calibration report.

Uniformity of conventional block cyclers

Mean values
of multiple
neasurements
of tested
cyclers

an be found at ww.cvclertest.com

1ore information

Reduced probe concentration

In many cases, researchers use ~200nM final probe concentrations.

Can lower probe concentrations be used (how low?) and does it influence the performance of the assay?

Reduced probe concentration 100 nM 5 nM

Given Conc.	100nM	75nM	50nM	25nM		
Copies	Ct-value	Ct-value	Ct-value	Ct-value		
_						
1:1	7.11	7.02	7.55	7.82		
1:10	10.62	10.44	10.52	10.88		
1:100	13.98	13.85	14.14	14.06		
1:1000	17.67	17.54	17.89	17.92		
1:10000	21.09	20.99	21.23	21.2		
1:100000	24.51	24.37	24.64	24.81		
1:1000000	28.01	27.87	28.15	28.26		
1:10000000	31.82	31.69	31.59	31.71		
R-value (R)	0.99994	0.99992	0.99983	0.99975		
R^2-value	0.99987	0.99983	0.99967	0.99950		
Reaction eff	93%	93%	94%	95%		
Slope (m)	0.285	0.285	0.288	0.290		
Intercept (b)	10.499	10.452	10.588	10.653		

Given Conc.	15nM	10nM	5nM	
Copies	Ct-value	Ct-value	Ct-value	
1:1	7.2	7.53	8.34	
1:10	10.2	10.76	11.86	
1:100	13.6	14.12	15.20	
1:1000	16.94	17.66	18.86	
1:10000	20.76	20.98	22.23	
1:100000	24.09	24.54	25.60	
1:1000000	27.68	28.05	29.23	
1:10000000	30.96	31.58	32.72	
R-value (R)	0.99975	0.99991	0.99996	
R^2-value	0.99950	0.99983	0.99993	
Reaction eff.	95%	95%	94%	
Slope (m)	0.291	0.290	0.288	
Intercept (b)	10.476	10.608	10.874	

Reduced probe concentration

100 nM

 5 nM

Std dev: 0.05

Std dev: 0.09

CAS-1200

Minimal volumes run on the Rotor-Gene

Minimal volumes run on the Rotor-Gene

Minimal volumes run on the Rotor-Gene 72 replicates

Replicates run on the Rotor-Gene

hand pipetting

full 36-well rotor

full 72-well rotor

Standard deviation 0.05

Replicates run on the Rotor-Gene using CAS-1200

Standard deviation 0.02 - Ct_{max}: 15.29 Ct_{min}: 15.24

Summary

es, times can be reduced using "opitical denaturation"

es, probe concentration could in some cases ignificantly be reduced

es, minimal volumes using the CAS-1200 can be run on the Rotor-Gene

Thanks!

Enjoy Your Evening...