Please note that a typographical error occurred in equation 3 in this paper. Here is the correct equation for calculating efficiency, and its derivation.

Start with the equation relating efficiency to the cycle number at each threshold, A and B (cycle $\mathrm{C}_{\mathrm{t}, \mathrm{A}}$ and $\mathrm{C}_{\mathrm{t}, \mathrm{B}}$):

$$
\begin{equation*}
R_{A}=R_{0} \cdot(1+E)^{C_{t, A}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{B}=R_{0} \cdot(1+E)^{C_{t, B}} \tag{2}
\end{equation*}
$$

Express this as a ratio of R_{A} / R_{B} :
$\frac{R_{A}}{R_{B}}=\frac{(1+E)^{C_{t, A}}}{(1+E)^{C_{t, B}}}$
(The R_{0} terms just cancel out). Both sides of this equation are <1.
This can be re-written as:
$\frac{R_{A}}{R_{B}}=(1+E)^{C_{t, A}-C_{t, B}}$
Note that here that we assume that E is the same in equation (1) and (2); essentially we are calculating the efficiency between cycle $\mathrm{C}_{\mathrm{t}, \mathrm{A}}$ and $\mathrm{C}_{\mathrm{t}, \mathrm{B}}$. If cycle $\mathrm{C}_{\mathrm{t}, \mathrm{A}}$ and $\mathrm{C}_{\mathrm{t}, \mathrm{B}}$ are fairly close together we can assume that the efficiency is not changed during this period. For bigger gaps between cycle $\mathrm{C}_{\mathrm{t}, \mathrm{A}}$ and $\mathrm{C}_{\mathrm{t}, \mathrm{B}}$ this is likely to be untrue, and the efficiency calculated will be a some sort of average efficiency over the period).
so:

$$
\begin{equation*}
\left(\frac{R_{n, A}}{R_{n, B}}\right)^{\frac{1}{C_{t, A}-C_{t, B}}}=(1+E) \tag{5}
\end{equation*}
$$

or
$E=\left(\frac{R_{n, A}}{R_{n, B}}\right)^{\frac{1}{C_{t, A^{-}}-C_{t, B}}}-1$
which is the correct form of the equation.
In Liu and Saint (2002) Anal Biochem. 2002 Mar 1;302(1):52-59, the correct equation was used in the simulation and calculations; a typo crept into the manuscript in equation 3, and unfortunately went undetected.

