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Conventional PCR-Based
Testing Formats
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(1) DNA/IRNA (2) DNA (3a) Gel (4) Southern
extraction  amplification® electrophoresis blotting

(3b) Enzyme-linked
~ hybridization

“If RNA extracted, a
reverse transcription step
IS required to form cDNA
betore amplification ot
DNA by PCR is possible
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What is Wrong with
Agarose Gels?

* Poor precision

* Low sensitivity

* Short dynamic range < 2 logs
* Low resolution

* Non-automated

* Size-based discrimination only
* Results are not expressed as numbers

* Ethidium bromide staining is not very quantitative

ABI: Real-Time PCR vs Traditional PCR (www)




Real-Time PCR

Real-time PCR monitors the fluorescence emitted during
the reaction as an indicator of amplicon production at
each PCR cycle (in real time) as opposed to the endpoint
detection
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How it Works: Real Time PCR
Brendan Maher

The instrumentation is basic: a thermal cvcler for
amplification, a light source for excitation of
fluorescent probes (see chemistries below), a camera
for recording, and a computer to control the
instrument and record data. Increasingly sophisticated
instruments, such as those capable of multiplex
experiments, are becoming affordable in academic labs.

The light source in the Applied Biosvstems 7500 )
{represented here) is a simple halogen lamp shone it
through one of five different excitation filters over the
entire sample. A CCD camera positioned above the
zample records fluorescence from behind one of five
emission fi lters. Some makes and models use a scanning
head that moves over the plate, exciting and reading
fluorescence in the wells individually.

Many gPCR instruments including the ABI 7500 use a
Pelter element for heating and cooling. Peltier coolers
use electron flow between semiconductor couples to
heat or cool one side of a plate depending on the
direction of current. Other systems use liguid or air fl
ow or mechanical transition between blocks of
different temperatures to cycle the samples.
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Real-time PCR is Kkinetic

Detection of “amplification-associated fluorescence™ at each
cycle during PCR

No gel-based analysis at the end of the PCR reaction

Computer based analysis of the cycle-fluorescence time course

Increasing
fluorescence

Linear plot
PCR cycle

Nigel Walker, NIEHS (www)




Real-time PCR advantages

* not influenced by non-specific amplification
* amplification can be monitored real-time

* no post-PCR processing of products
(high throughput, low contamination risk)

* ultra-rapid cycling (30 minutes to 2 hours)
* wider dynamic range of up to 101%-fold

* requirement of 1000-fold less RNA than conventional assays
(3 picogram = one genome equivalent)

* detection is capable down to a 2-fold change
* confirmation of specific amplification by melting curve analysis
* most specific, sensitive and reproducible

* not much more expensive than conventional PCR
(except equipment cost)




Wider Dynamic Range

Example 1:  Figure 4 illustrates an example of the linear dynamic range for a one-step RT-PCR run
Linear Dynamic using a 1-10%pg range of initial template concentrations.
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Figure 4. Standard Curve (Human GAPDH mBMA Systern). Each data point represents the
average of triplicate reactions.

All initial template concentrations plotted on the graph appear to be in the linear
dynamic range for the system. Therefore, any total RMNA concentration within the
1-10% pg range can be used. However, the greatest sensitivity will be achieved if the

limiting primer experiment is run at 1 pg initial total FNA.
ABI-7700 User Bulletin #5

5K Applied
#59 Biosystems



Real-time PCR disadvantages

* not ideal for multiplexing
* setting up requires high technical skill and support

* high equipment cost

X kK X

* intra- and inter-assay variation
* RNA lability

* DNA contamination (in mRNA analysis)




Real-time Principles

* based on the detection and quantitation of a fluorescent
reporter

* the first significant increase in the amount of PCR product
(C; - threshold cycle) correlates to the initial amount of
target template




Figure 8: Good Threshold Setting

cxponenta

ol
“hase

Threshold | |
Value B

! 1I:|"I;

— Sl i
[ Féri - 43
A rw - an
B Fari - a5
A FaH - na
B rar- a7
[ Firi - A3
B rari-ms
[= Pt - e

|

102 3

Background

EA Fari - g w|

L LT

BADHE A BB HER D e [T 3

o
Flugrescence
i ——
e Tl paciiadsl Dpa e Cakkulafion
— Wi kel

tes Theechai| 173 ] [maggeet | | S ber
i l‘“'l:l T=T:] Ill oT] I F e — &R ] i 10ixl
mw.- Fd — AR -1 5 ] 0 K]
File - &5 i A (L1 (]
ﬂ'lH'|| L Iﬂ'l-a-p-'l if I F il - ] [ Tl
T |

AT Applied
9 Biosystems




i
‘.I

ﬂl
* s ipge i
;

The five-fold dilution series seems to plateau at the same place even though the
exponential phase clearly shows a difference between the points along the dilution
series. This reinforces the fact that if measurements were taken at the plateau phase,
the data would not truly represent the initial amounts of starting target material.

2 Applied
n&'% Bigsp].rls!ems




Real-Time Principles

Three general methods for the quantitative assays:
1. Hydrolysis probes
(TagMan, Beacons, Scorpions)
2. Hybridization probes
(Light Cycler)
3. DNA-binding agents
(SYBR Green)
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How it Works: Real Time PCR

Brendan Maher

raghdan requires a sequence-specific probe Molecular Beacons uses sequence specific Scorpions chemistry combines probe and SYBR Green | fluoresces only when boun
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Methods of fluorescence detection

Molecular Light
Beacons

SYBR Green Taqman

Nigel Walker, NIEHS (www)



a SYBR Green | b Hydrolysis probe ¢ Hybridization probes
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Van der Velden, Leukemia 2003 (www)




(a)

(b)

(c)

Principles of Real-Time Quantitative PCR Techniques

SYBR Green I technique: SYBR Green I fluorescence is enormously increased upon
binding to double-stranded DNA. During the extension phase, more and more SYBR
Green I will bind to the PCR product, resulting in an increased fluorescence.
Consequently, during each subsequent PCR cycle more fluorescence signal will be
detected.

Hydrolysis probe technique: The hydrolysis probe is conjugated with a quencher
fluorochrome, which absorbs the fluorescence of the reporter fluorochrome as long
as the probe is intact. However, upon amplification of the target sequence, the
hydrolysis probe is displaced and subsequently hydrolyzed by the Taq polymerase.
This results in the separation of the reporter and quencher fluorochrome and
consequently the fluorescence of the reporter fluorochrome becomes detectable.
During each consecutive PCR cycle this fluorescence will further increase because
of the progressive and exponential accumulation of free reporter fluorochromes.
Hybridization probes technique: In this technique one probe is labelled with a
donor fluorochrome at the 3’ end and a second —-adjacent- probe is labelled with an
acceptor fluorochrome. When the two fluorochromes are in close vicinity (1-5
nucleotides apart), the emitted light of the donor fluorochrome will excite the
acceptor fluorochrome (FRET). This results in the emission of fluorescence, which
subsequently can be detected during the annealing phase and first part of the
extension phase of the PCR reaction. After each subsequent PCR cycle more
hybridization probes can anneal, resulting in higher fluorescence signals.

Van der Velden, Leukemia 2003 (www)




A. Increased fluorescence by binding double stranded DNA.

» Minimal fluorescence before amplification

* Increased fluorescence after amplification

B

i 0 O o OO O

B. Release from quenching by hydrolysis.

+ Quenching of donor by acceptor

* Increased donor fluorescence after hydrolysis

Folymemase

C.  Increased resonance energy transfer by hybridization.

=fase line donor flusrescence

*Increased donor trunsfer 1o aceeptor

Wittwer, 1997 (www)




Schematic diagram comparing three different fluorescence-monitoring
systems for DNA amplification. System A uses dsDNA-specific dyes (F) such as
SYBR"Green I, which increase in fluorescence when bound to accumulating
amplification product. System B uses dual-labelled probes and depends on the
5'-exonuclease activity of the polymerase to separate donor (D) and acceptor
(A) by hydrolysis. Donor fluorescence is increased by removing acceptor
quenching. System C depends on the independent hybridization of adjacent
donor (D) and acceptor (A) probes. Their approximation increases resonance
energy transfer from the donor to the acceptor. Other symbols are "hv" for

excitation light and "x" for a 3'-phosphate.

Wittwer, 1997 (www)




TaqMan Probes

FRET = Forster/fluorescence resonance energy transfer &
DNA Polymerase 5' exonuclease activity

* Tm value 100 C higher than primers
* runs of identical nucleotides (no consecutive Gs)
* G+C content 30-80%
* more Cs than Gs
* no G at the 5' end

ABI Primer Express Software Tutorial (www)




FRET = Forster/fluorescence resonance energy transfer

Intact Probe Cleaved Probe
Wavelength
ABI: Real-Time PCR vs Traditional PCR (www)




DNA Polymerase 5' Exonuclease Activity

(a) Tag polymerase
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Mocellin et al. Trends Mol Med 2003 (www)
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The TagMan 5° Exonuclease Assay

In addition to two conventional PCR primers, P1 and P2, which are specific for the target sequence, a third primer,
P3, is designed to bind specifically to a site on the target sequence downstream of the P1 binding site. P3 is
labelled with two fluorophores, a reporter dye (R) is attached at the 5 end, and a quencher dye (D), which has a
different emission wavelength to the reporter dye, is attached at its 3 end. Because its 3 end is blocked, primer
P3 cannot by itself prime any new DNA synthesis. During the PCR reaction, Tag DNA polymerase synthesizes a new
DNA strand primed by P1 and as the enzyme approaches P3, its 5 3 exonuclease activity processively degrades
the P3 primer from its 5 end. The end result is that the nascent DNA strand extends beyond the P3 binding site
and the reporter and quencher dyes are no longer bound to the same molecule. As the reporter dye is no longer in
close proximity to the quencher, the resulting increase in reporter emission intensity is easily detected.

| Hiimaarnm Malaciilar Canafice D NOCRT Banlee 7vnmamar)



Dye and Quencher Choice

When designing a fluorescent probe, it is necessary
to ensure that the fluorophore and quencher pair is
compatible, given the type of detection chemistry.
In addition, when designing multiplexed reactions
the fluorophores and quenchers chosen for the
different targets should minimize the spectral
overlap between them, to avoid possible crosstalk
issues (Table 1).

Filter Set Ex Wavelength  Em Wavelength
Alexa 350 390 440
FAMYSYER Green| 492 o16
TET ol7 238
HEX/JJOEMC 935 085
CY3 045 268
TAMIRA, tatels) D80
ROX/Texas Red o85 610
CYS 635 665
H: 640 462 ©35
HR ROX 462 610
H: CY5 4692 665

Table1

Parameters of the Mx3000P system filter sets. FR 640, FR ROX and
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TaqMan Primers

* equal Tm (58-60° C)

* 15-30 bases in length

* G+C content 30-80%

* no runs of four or more Gs (any nucleotide)
* no more than two G+C at the 3’ end
* no G at the 5' end

* amplicon size 50-150 bp (max 400)
* span exon-exon junctions in cDNA

ABI Primer Express Software Tutorial (www)




Linear After The Exponential (LATE) PCR

Detection of CFTR-specific
product in samples
containing different initial
concentrations of DNA.
(A) Optimized LATE-PCR
was carried out by using
100,000 (red), 10,000
(green), 1,000 (orange),
100 (blue), and 10
(purple) copies of human
20 25 30 35 40 genOmiC DNA. Curves

Cycle Number show molecular beacon
fluorescence increase in
eight replicate samples at
each starting template
concentration.
(B) Plots of initial DNA
concentration vs. cycle 40
fluorescence demonstrates
the quantitative nature of
these endpoint values
(R? = 0.974) (www)
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Locked Nucleic Acid (LNA) Primers & Probes

B2

1=

10—

Flunrescence [F1)
i
|

FIGURE 5. Real-time PCR resulis with CFTR polymorphism 1717-1G= A. SYBR Green fluorescence curves from LightCycler software
analysis of cystic fibrosis SNP 1717-1G = A are displaved for wild-iype template with DNA and 3' LNA wild- and mutant-type primers
as indicated. PCR and thermal cycling conditions are given in the Materials and Methods section. The difference in cvele threshold
value (ACt) between matched and mismatc hed primer is two for the DNA primer and 11 for the LNA primer.
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SYBR Green
(double-stranded DNA binding dye)

* emits a strong fluorescent signal upon binding to
double-stranded DNA

* nonspecific binding is a disadvantage
* requires extensive optimization
* requires melting point curve determination
* longer amplicons create a stronger signal

* may be multiplexed when coupled with melting
curve analysis
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Multiple Optimized Chemistries

SYBR® Green Assay

. Fluoresces when bound
to dsDNA
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SYBR Green  Emitted Light
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SYBR Green

(1) At the beginning of amplification, the reaction mixture contains the denatured
DNA, the primers, and the dye. The unbound dye molecules weakly fluoresce,
producing a minimal background fluorescence signal which is subtracted during
computer analysis. (2) After annealing of the primers, a few dye molecules can bind
to the double strand. DNA binding results in a dramatic increase of the SYBR Green I
molecules to emit light upon excitation. (3) During elongation, more and more dye
molecules bind to the newly synthesized DNA. If the reaction is monitored
continuously, an increase in fluorescence is viewed in real-time. Upon denaturation
of the DNA for the next heating cycle, the dye molecules are released and the
fluorescence signal falls.

Mapping Protein/DNA Interactions by Cross-Linking (NCBI Books) (www)




When to Choose SYBR Green

* Assays that do not require specificity of probe based
assays. Detection of 1000s of molecules

* General screening of transcripts prior to moving to probe
based assays

* When the PCR system is fully optimized -no primer
dimers or non-specific amplicons, e.g. from genomic DNA




When Not to Choose SYBR Green

* Allelic discrimination assays (not an absolute one)
* Multiplex reactions (not an absolute one)
* Amplification of rare transcripts

* Low level pathogen detection




Real-Time Principles

Three general methods for the quantitative detection:
1. Hydrolysis probes
(TaqMan, Beacons, Scorpions)
2. Hybridization probes
(Light Cycler)
3. DNA-binding agents
(SYBR Green)



Molecular Beacons

(a)
Beacon probe

>l UL IR NN IO GG, &

Target gene

() Fluorescence
Emission

Target gene

TRENLDS in Molecwar Wedicine

Mocellin et al. Trends Mol Med 2003 (www)




Real-Time Principles

Three general methods for the quantitative detection:
1. Hydrolysis probes
(TagMan, Beacons, Scorpions)
2. Hybridization probes
(Light Cycler)
3. DNA-binding agents
(SYBR Green)




Scorpions
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Scorpions

Figure 2. Real-ime RT-PCR with Szorpions. A standard RT step is followed by denaturation of the double-siranded
ternplate. (A In the hairpin lop stucturs, the fusrophors attached at the & end forms @ non-fucrescent comples
with the quencher at the 3 end. The hairpin loop is linksd to the & end of a speeifiz primer through a PCR stopper
triat prevants read-through of the hairpin loop. During PCR, the Soorpion primers are extendsd to become part of
the amplicon. During the annealing’axtension phase of the PCR reaction, the probe saquence in the Scorpion
hybridises b the newly formad complementary target saquencs inthe PCR produdt separating the flucraphors from
the quancher and resulting in a flucrescent signal. As the tail of the Scorpion and the PCR product are now part

of the same strand of OMA, the interaction is inframalecular, The target sequence is typically chosen to b2 within
thres bases of the 3 end of the Scorpion primer. (B) Separation of flucrophors and quencher onto different
oligonudectides impraves signal intensity. The quenn:her digonucleotide has the quancher at its 3 end and is
complementary bo the probe sequence. Fallowing denaturation and polymerisafion, intramalecular intsraction of
probe and newly synthesisad product is mare favourable than intermolecular binding between quencher
oligonudsctide and the probe.

Bustin SA. J Mol Endocrinol 2002 (www)




Threshold Cycle

* threshold cycle or the C; value is the cycle at which
a significant increase in ARn is first detected

* it is the parameter used for quantitation

* C; value of 40 or more means no amplification and
cannot be included in the calculations




What is C;?

@

Threshold is the point !
of detection.

} A l'

! Cycle-Threshold
(Ct) evele at which
5 sample crosses
threshold

Cvele #

The Amplification Plot contains valuable information for the quantitative measurement of DNA or
RNA. The Threshold line is the level of detection or the point at which a reaction reaches a
fluorescent intensity above background. The threshold line is set in the exponential phase of the
amplification for the most accurate reading. The cycle at which the sample reaches this level is
called the Cycle Threshold, C;. These two values are very important for data analysis using the 5’

nuclease assay.
' Applied
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-Absolute quantitation

-Standard curve
-Standards must be accurately quantitated
-Best used for viral load determination

-Relative quantitation

-Standard curve

-Standards are serial dilutions of a calibrator template
-Best used for gene expression studies

-Comparative quantitation

-Mathematical determination
-Calibrator sample used as a 1x standard
-Best used when particular ratios are expected or to

verify trends

THE ARHA COMPANY *
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Albumin (ALB) gene dosage by real-time PCR
Laurendeau et al. Clin Chem 1999 (www)




Albumin (ALB) Gene Dosage by Real-Time PCR

Top, amplification plots for reactions with starting ALB gene copy humber of
33 000 (A1, 100 ng), 8250 (A4, 25 ng), 2062 (A7, 6.25 ng), or 515 (A10, 1.56
ng). The cycle number is plotted vs the change in normalized reporter signal
(Rn). For each reaction tube, the fluorescence signal of the reporter dye
(FAM) is divided by the fluorescence signal of the passive reference dye
(ROX) to obtain a ratio defined as the normalized reporter signal (Rn). Rn
represents the normalized reporter signal (Rn) minus the baseline signal
established in the first 15 PCR cycles. Rn increases during PCR as ALB PCR
product copy nhumber increases until the reaction reaches a plateau. C,
represents the fractional cycle number at which a significant increase in Rn
above a baseline signal (horizontal black line) can first be detected. Three
replicates were performed for each reference DNA sample, but the data for
only one are shown here. Bottom, calibration curve plotting log starting copy
number vs C,. The black symbols represent the triplicate PCR amplification of
the reference DNA samples and red symbols the triplicate PCR amplification
of unknown genomic DNA, all included inside the calibration curve. The copy
number of ALB (x) can be calculated as follows: y = -3.374x + 40.593, where
the C, value is substituted as y.

Laurendeau et al. Clin Chem 1999 (www)




ARN

* Rnt* is the Rn value of a reaction containing all
components (the sample of interest); Rn- is the Rn
value detected in NTC (baseline value)

* ARN is the difference between Rnt and Rn-. It is an
indicator of the magnitude of the signal generated by
the PCR

* ARn is plotted against cycle humbers to produce the
amplification curves and gives the C; value




What is ARNn?
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What is ARNn?
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Example analysis of CYP1A1

Amplification - Imearify best 115190960

*SYBR Green detection

I

*10-fold dilution series
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Endogenous/Internal Control
(Normalization)

* usually an abundantly and constantly expressed
housekeeping gene

* most commonly used ones are the least reliable ones

* best to run a validity test for the selected endogenous
control

* combination may/should be used




Endogenous Control Selection
IPC 185 PO BA CYC GAPDH PGKE E2Zm  GUS HPRT TEP TR I

ACy (Cycles)
L ]

-5

FIGURE 1. Variation in housekeeping gene expression in
healthy individuals. The calibrator served as a baseline for
the assay and is shown as zero on the graph. Samples with
values above zero indicate lower levels of target gene expres-
sion, whereas those below zero indicate a higher level of
expression of the specific gene compared with the calibrator.
Genes that show little variation from the calibrator (zero
line) in multiple sample analvsis were chosen for use as reli-
able internal housekeeping control genes.

Sabek et al. Transplantation 2002 (www)




Multiplexing

* TaqgMan: different dyes for each target (FAM, TET, VIC
and JOE)

* SYBR green: different melting points for each target

* extensive optimization is required




Multiplex Real-Time PCR

(fluorescein-labeled molecular beacon)
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Thermal Cycles

Real-time detection of four different
retroviral DNAs in a multiplex format.
Four assays were carried out in sealed
tubes, each initiated with

100,000 molecules of a different
retroviral DNA. Each reaction contained
four sets of PCR primers specific for
unique HIV-1, HIV-2, HTLV-I, and HTLV-II
nucleotide sequences and four molecular
beacons, each specific for one of the four
amplicons and labelled with a differently
coloured fluorophore. Fluorescence from
the fluorescein-labeled molecular beacon
(HIV-1-specific) is plotted in red,
fluorescence from the
tetrachlorofluorescein-labelled molecular
beacon (HIV-2-specific) is plotted in
green, fluorescence from the
tetramethylrhodamine-labelled molecular
beacon (HTLV-I-specific) is plotted in
blue, and fluorescence from the
rhodamine-labelled molecular beacon
(HTLV-II-specific) is plotted in brown.
The slight HTLV-I signal seen in the assay
initiated with HTLV-II DNA is an artefact
that resulted from a portion of the
rhodamine fluorescence being interpreted
by the spectrofluorometric thermal cycler
as tetramethylrhodamine fluorescence.
Vet JA et al. PNAS 1999 (www)




Multiplex Real-Time PCR

(fluorescein-labeled molecular beacon)
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Read SJ et al. J Clin Microbiol 2001 (www)




Efficiency

The slope of the log-linear phase is a reflection of the
amplification efficiency

The efficiency of the reaction can be calculated by the
following equation: Eff=10(-1/slore) -1, The efficiency of
the PCR should be 90-100% (ideal slope = -3.3)

A number of variables can affect the efficiency of the PCR.
These factors can include length of the amplicon,
secondary structure, and primer design, to name a few

Approximation vs Pfaffl method

(Efficiency Determination)




Calculation

The slope of the standard curve can be used to determine the exponential
amplification and efficiency of the PCR reaction by the following equations:

Exponential Amplification = 10-Vslope)
Efficiency = [10'--1-'54-:'5&_. -1

The following table shows the amplification and efficiency for various values of

the slope:
Slope Amplification Efficiency
-3.60 1.8957 0.8957
-3.55 1.9129 0.9129
-3.50 1.9307 0.9307
-3.45 1.9492 0.9492
-3.40 1.9684 0.9684
-3.35 1.9884 0.9884
-3.30 2.0092 1.0092
-3.25 2.0309 1.0309
-3.20 2.0535 1.0535
-3.15 20771 1.0771
-3.10 21017 1.1017

As the table illustrates, optimal PCR efficiency is indicated by a slope of -3.3.

Stratagene Application Notes #10 (www)




Using the PCR Equation

X = X,(1 + E)"

X,, = PCR product after cycle n

X, = initial copy humber

E = amplification efficiency

n = cycle number XO

cycle number



Effect of Amplification Efficiency

X = X,(1+E)n

Casel: E=0.9 Case2: E=0.8

X, =100 (1-+0.9)% X, =100 (1+0.8)

X, =2.3x1010 X, =4.6x10°

Result
A difference of 0.1 in amplification
efficiencies created a five-fold difference in the
final ratio of PCR products after 30 cycles



Calculation of real-time PCR efficiency

39 -
—— ngcOMA ws CP(Tyrd) slope=-3.122 E=208
—&— ng cOMA vs. CP{PyrE) slope =-2892 E =218
—y— ng cOMA vs. CP(Gst) slope =-3.437, E=1048
a0 - —— regressions

r-a
[Ny |
1

r-2
=
1

cycle number of crossing point (CP)
o

10 - - - - - - - - - :
oozs 005 0.1 0,25 05 1 25 5 10 20 a0
cDONA input (ng)

Determination of real-time PCR efficiencies of reference gene (Gst), target gene 1
(TyrA) and target gene 2 (PyrB). CP cycles versus cDNA (reverse transcribed total
RNA) concentration input were plotted to calculate the slope (mean £ SD; n = 3).
The corresponding real-time PCR efficiencies were calculated according to the
equation: E = 10[-1/slope]

From: Pfaffl MW. A new mathematical model for relative quantification in
real-time RT-PCR. Nucleic Acids Res 2001 (www)




If the C; values for each of the dilutions are plotted against
concentrations, the result should be a linear graph with a high
correlation coefficient (> 0.99). The slope of this graph is also a
measure of efficiency, and can be readily used to calculate efficiency -
this is done by most software (iCycler, for example).

Real-Time PCR Tutorial (University of South Carolina) (www)




Calculation of Efficiency

Based on a linear plot of Cy vs. log copies:
Efficiency(e%) = 10 (-1/slope)
100% efficiency (2 copies each cycle) slope of —3.3219.

P ———— Slope = -3.462
e=10¢13462) =195

1.95 copies per cycle
ACt=33

Fold= (1.95) 331=19.1 fold

Nigel Walker, NIEHS (www)




Issues of assay design

RNA specific sets -1€ Primers spanning intron location
W If you know the gene and have the time go for 1t.
W Not all genes in database and annotated esp. rat

Do you need RNA specific sets?
® RNA expression 10°-10° copies/100ng total RNA
® 100 ng RNA approx = 100 single gene copies (assuming 1% DNA contam)
Reverse transcription
W Gene specific primer is best especially 1f using a synthetic RNA standard
® Oligo d(T)-may not be good for 5’ end targets
® Random hexamers - poor for synthetic RNA standard

Nigel Walker, NIEHS (www)



Assay Validation

* Test primer pairs in all combinations with the probe with
a known template (plasmid clone, sDNA, RNA)

* Use standard assay conditions: 300-400 nM primers;
100 nM probe, 3 mM MgCl,

* Choose the primer pair that gives the highest ARn
and the lowest C;

* Make a dilution of a template, either sDNA, sRNA or total
RNA for a standard curve

* Correlation coefficient of the standard curve > 0.99?

* If the slope of the standard curve of the best primer
pair is around -3.5 increase the MgCl, to 5 mM

* If the slope is higher than -3.6, change primers

* An ideal assay will have a slope of -3.3




Validation of bcr-abl p210
real-time PCR

A, Amplification, bcr032801.
Standards were as follows: A, 105;
B, 10%; C, 103; D, 102, E, 10; and F,
10°. ARn, change in fluorescence.
B, Standard curve, bcr032801.
Slope, -3.499; Y-intercept, 33.670;
correlation coefficient, 0.998. Red,
unknown; black, standards.
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Data Quality Evaluation for Real —time PCR
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Figure 2

Data guality control. The four classes represent four different combinations of sample and gene, which are
reference gene in control sample, target gene in control sample, reference gene in treatment sample, and
target gene in treatment sample. Each class should derive a linear correlation between Ct and logarithm

transformed concentration pf PCR product with a slope of -1.

Yuan, 2006 (www)




I. Assay Development
A. Sequence selection
B. Primer & probe selection
C. Quencher dye and internal reference

D. Assay validation

II. Assay Setup
A. One- or two-Step PCR

B. Thermocycler settings

I1I. Data Analysis
A. Baseline and threshold settings
B. Standard Curves
C. Inter- vs intra-assay variability

D. Sample normalization




I. Assay Development
A. Sequence selection
B. Primer & probe selection
C. Quencher dye and internal reference

D. Assay validation

II. Assay Setup
A. One- or two-Step PCR

B. Thermocycler settings

I1I. Data Analysis
A. Baseline and threshold settings
B. Standard Curves
C. Inter- vs intra-assay variability

D. Sample normalization




One-Step or Two-Step PCR

* one-step real-time RT-PCR performs reverse
transcription and PCR in a single buffer system and in
one tube

* in two-step RT-PCR, these two steps are performed
separately in different tubes
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Reporter, Quencher and Internal Reference Dyes
* The classical reporter dye is 6-FAM (fluorescein)
* Other reporters used for multiplexing are Joe and Vic.

* Some other real-time machines, such as the Stratagene
Mx4000, can use red dyes as reporters

* The classic quencher dye has been TAMRA (rhodomine)

* Newer quenchers are the dark dyes, DABYCL and the
black hole quenchers (Biosearch Technologies)

* TAMRA-quenched probes do not require a reference dye;
they can use the TAMRA itself

* Single probe reactions quenched by dark dyes should use
an internal reference dye, classically ROX (dark red)

* Multiplex reactions usually use dark quenchers and ROX




Sample Layout

20 unknowns in triplicate, standard curve, NACs and NTC

DL Shipley: Quantitative Real-time RT-PCR: A very short course (www)




Interpretation
* Melting curve analysis
* Absolute quantification
* Relative quantification
i. Relative standard method (relative fold change)

ii. Comparative threshold method
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Figure 2 Melting curve analysis. (a) Amplification curves of several dilutions of the U937 cell line using SYBE Creen |-based RO)-PCE analysis
of the ABL gene. An increase in fluorescence is ohserved for all U937 dilutions, but lso for the water control, suggesting nonspecific amplification.
(b} Melting curve analysis of the same samples shows the presence of the specific PCR product (melting temperature approximately B6°C) in the
U937 samples, but not in the water control, indicating that no specific PCR product has been formed. The increase in fluorescence apparently was
hecause of nonspecific amplification or the formation of primer dimers.

Van der Velden. Leukemia 2003 (www)
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% Melting Curves: LC002-C282Y-120600; F2/F1; MeltingCurve seg 3

St T Moking Peaks | step 2 sk Avess | Exvx Mamual T mutation using melting curve analysis of FRET
hybridization probes
|| e AA, G845A homozygotes; GA, G845A
TSt o e heterozygotes; GG, or “wild-type”
— ks 00 ﬁd ] homozygotes. : Plot of red
— ] iy fluorescence relative to reference (F2/F1)
5 10 c versus temperature (T) for the three genotypes.
3 e § Three different melting curves are shown for
0 B £ the three possible genotypes. These represent
. - changes in fluorescence of the FRET
4 oz _ complexes as they are heated through their
_E ﬁEE T K e e g s melti_n_g te_mperature at the end of PCR
- Eos- Tenpectue (0 amplification. : -d(F2/F1)/dT
R | BRI versus temperature (T). The apex of the curves
—  oe] represents the melting point for the
€ s fluorescent complexes. The FRET probes bind
%‘M_ to both alleles to form a fluorescent complex;
§m_ however they are complementary to the A
2 o] A allele but mismatched to the G allele by one
o1] base. Consequently the melting temperature of
e R the fluorescent complex is higher for the A
LEEHOC) allele than the G allele. Heterozygotes have

two peaks representing both alleles.

Mamotte, Langan & Pocathikorn. DCIBG, Royal Perth Hospital, June 2004 (www)



Interpretation
* Melting curve analysis
* Absolute quantification
* Relative quantification
i. Relative standard method (relative fold change)

ii. Comparative threshold method
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Figure 8

Experimental setup for standard curve quantification. Using a known starting concentration of template from one of a variety of sources, a
dilution series is performed. These samples are run under the standard well type on the same plate as your unknowns. By comparing the
Ct values of the unknowns to the Ct values of the standards, the starting template quantities for the unknown samples can be calculated.

Methods and Application Guide
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Standard Curve

40}
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y=-3.63x+ 33.7°7
1 R%=0.5938
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log3 logd logS log6 log7?

Flogure 3. When the known concentrations (expressed
in logarithmic form, X axis) of target gene are plotted
against the corresponding cycle threshold (Ct, ¥ axis)
obtained by qr-PCR, the result is a line representing the
linear correlation between the two parameters. The
equation describing this relationship is used to
extrapolate the gene copy number in experimental
samples.
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Example of a Real-Time RT-PCR Experiment

nlification Profile

o2-macroglobulin

standard curve,
unknowns




Interpretation
* Melting curve analysis
* Absolute quantification
* Relative quantification
i. Relative standard method (relative fold change)

ii. Comparative threshold method




Table 1. Characteristics of Relative Quantitation Methods

Methods Amplification Amplification Amplification Automated

Efficiency Efficiency Efficiency Excel-Based
(Reference) . . .

Correction Calculation Assumptions Program
Standard Curve standard no experimental

no - no
(31) curve sample variation
Comparative C, (2-44CY) (21) yes el reference = target no

curve

Pfaffl et al. standard B a
(26) yes curve sample = control REST
Q-Gene standard B ) b
(23) yes curve sample = control Q-Gene
Gentle et al. researcher defines

yes raw data . no
(7) log-linear phase

reference and
Liu and Saint os raw data target genes can o
(22) : have different
efficiencies

DART-PCR yes raw data s*ﬂatl:ﬂ:-tht:.anllyr defined DART-PCR®
(30) log-linear phase

C, cycle threshold, DART-PCR, data analysis for real-time PCR; REST, relative expression software tool.

yww.gene-guantification.info
Eyyww. BioTechniques.com

“nar.oupjournals.org/cgi/fcontent/full/31/14/e73/DCA1

Wong & Medrano, 2006 (www)




Relative quantitation

ACbetween “control” and “treated” RNAs on a single plate
K Fold-difference

R Cannot compare Ct between samples on different plates

AC; between “calibrator” RNA sample and unknown RNA
& Same calibrator RNA can be on multiple plates

AAC;between “control” and “treated”
& Fold change-normalized to a separate reference gene/sample

Nigel Walker, NIEHS (www)



Relative fold change

C. inversely correlated with starting copies

Each cycle there 1s a “doubling” of amplicons (assuming 100%
efficiency)

Difference 1n 1 cycle therefore a 2=fold difference in copies

Fold change = 2ACT
ACt=3.31
Fold difference in starting copy number=2331=99

Nigel Walker, NIEHS (www)




Interpretation
* Melting curve analysis
* Absolute quantification
* Relative quantification
i. Relative standard method (relative fold change)

ii. Comparative threshold method
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Validation Experiment for Comparative C; Method - I

Relative Efficiency of For the AAC calculation to be valid, the efficiency of the target amplification and the
Target and efficiency of the reference amplification must be approximately equal. A sensitive
Reference method for assessing if two amplicons have the same efficiency is to look at how AGy
varies with template dilution. The standard curves for c-myc and GAPDH used in the
previous section provide the necessary data. Table 2 shows the average Cy value for
c-myc and GAPDH at different input amounts.

Table 2. Average Ct Value for c-myc and GAPDH at Different Input Amounts

Input Amount c-myc GAPDH ACy
ng Total RNA Average Cr Average Ct c-myc - GAPDH
1.0 25.5910.04 22.64:0.03 2.95+0.05
0.5 26.77+0.09 23.73:0.05 3.04+0.10
0.2 28.1410.05 25.12:0.10 3.02+0.11
01 29.18+0.13 26.16+0.02 3.01+0.13
0.05 30.14+0.03 27.17+0.06 2.97+0.07
0.02 31.44+0.16 28.62+0.10 2.82+0.19
0.01 32.42+0.12 20.45:0.08 297+0.14

Figure 6 on page 14 shows a plot of log input amount versus ACy. If the efficiencies of
the two amplicons are approximately equal, the plot of log input amount versus ACy

has a slope of approximately zero.
ABI-7700 User Bulletin #2

KT Applied
D Biosystems




Validation Experiment for Comparative C; Method - 11

Validation Before using the AAC+ method for quantitation, perform a validation experiment like
Experiment that in Figure 6 to demonstrate that efficiencies of target and reference are
approximately equal. The absolute value of the slope of log input amount vs. ACy
should be <= 0.1.The slope in Figure 6 is 0.0492, which passes this test. Once this is
proven, you can use the AAC+ calculation for the relative quantitation of target without
running standard curves on the same plate.

If the efficiencies of the two systems are not equal, perform quantitation using the
standard curve method. Alternatively, new primers can be designed and synthesized
for the less efficient system to try to boost efficiency.

Relatiye EMiclency FPlot y = 00452 + 20178
c-Myc & GAFDH R*=02315
1.3
14
1.3
12
i1 F T F F

= -— -

L) - - -»

3 1.0 " T X
19 . = -
18T T+
2.7
16 =
1.5

2 -15 -1 -05 0
log ng Total RHA
Figure 6. Plot of log input amount versus AC+ ABI-7700 User Bulletin #2

K5 Applied
45D Biosystems
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A Ct = target - ref
ACt=9.70

A Ct = target - ref
ACt=-17

Difference = ACt-ACt
= AACt

= 9.70-(-1.7)

=11.40



AACt = 11.40 for IL1-beta

2 MCtyariant: assumes efficiency is 100%
Fold change = 21140 = 2702

But our efficiency for IL1-beta is 93%
Fold change = 1.9311-40 = 1800

Pfaffl equation corrected for RPLPO efficiency
Fold change = 1901



AACt

EFFICIENCY METHOD

e assumes
- minimal correction for the standard gene, or
- that standard and target have similar efficiencies
o 2 ALY yariant assumes efficiencies are both 100%

o approximation method, but need to validate that
assumptions are reasonably correct - do dilution curves to
check AC;s do not change

e The only extra information needed for the Pfaffl method is
the reference gene efficiency, this is probably no more
work than validating the approximation method



Efficiency adjusted Normalization

Fold-change can be “normalized” relative to a “reference gene”
Reference can be a separate sample on the plate

Beware of the interpretation of a normalized fold change
& Assumption that the reference gene is “unaffected” by treatment

Nigel Walker, NIEHS (www)




Real-Time PCR Applications - 1

* quantitation of gene expression
* array verification
* quality control and assay validation
* biosafety and genetic stability testing
* drug therapy efficacy / drug monitoring
* viral quantitation

* pathogen detection




Real-Time PCR Applications - 11

* DNA damage (microsatellite instability) measurement
* radiation exposure assessment
* in vivo imaging of cellular processes
* mitochondrial DNA studies
* methylation detection
* detection of inactivation at X-chromosome

* linear-after-the-exponential (LATE)-PCR: a new method for
real-time quantitative analysis of target numbers in small
samples, which is adaptable to high throughput applications
in clinical diagnostics, biodefense, forensics, and DNA
sequencing
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lelertitying Inactsied genes: methylaton-speciio PCR (TSF)
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Real-Time PCR Applications - III

* Determination of identity at highly polymorphic HLA loci
* Monitoring post transplant solid organ graft outcome
* Monitoring chimerism after HSCT
* Monitoring minimal residual disease after HSCT
* Genotyping (allelic discrimination)
- Trisomies and single-gene copy numbers
- Microdeletion genotypes
- Haplotyping
- Quantitative microsatellite analysis
- Prenatal diagnosis from fetal cells in maternal blood

- Intraoperative cancer diagnostics
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Allelic Discrimination Using TaqMan Probes
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The 1abla below summarizes the possible results of the example allelic discrimination

assay shown above.
A substantial increase in... Indicates...
VIC flucrescsnce only homozyoosity for Allsls 1.
FAM fluorezcencs only homozyoosity for Allels 2.
Ecth fluorescent signals heterozyaosity.

Applied
Bigfylstems



Allelic Discrimination Using TaqMan Probes

Two Types of TagMan® Probes

Applied Biosystems offers two types of TagMan probes:
. TaqMan@ probes (with TAMRA™ dye as the quencher dye)
e TagMan® MGB probes

TagMan® MGB Probes Recommended for Allelic Discrimination Assays
Applied Biosystems recommends the general use of TagMan MGB probes for allelic
discrimination assays, especially when conventional TagMan probes exceed 30 nucleotides. The
TagMan MGB probes contain:
» A nonfluorescent quencher at the 3" end - The SDS instruments can measure the
reporter dye contributions more precisely because the quencher does not fluoresce.
+ A minor groove binder at the 3" end - The minor groove binder increases the melting
temperature (Tm) of probes, allowing the use of shorter probes.

Consequently, the TagMan MGB probes exhibit greater differences in Tmvalues between
matched and mismatched probes, which provides more accurate allelic discrimination.

' Applied
A‘% Bigspylsiems




Allelic Discrimination Using SYBR Green

% Melting Curves: LC002-C282Y-120600; F2/F1; MeltingCurve seg 3
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Real-Time PCR Applications - III

* Determination of identity at highly polymorphic HLA loci
* Monitoring post transplant solid organ graft outcome
* Monitoring chimerism after HSCT
* Monitoring minimal residual disease after HSCT
* Genotyping (allelic discrimination)
- Trisomies and single-gene copy numbers
- Microdeletion genotypes
- Haplotyping
- Quantitative microsatellite analysis
- Prenatal diagnosis from fetal cells in maternal blood

- Intraoperative cancer diagnostics
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Fig.2. BRCAI exon 22 and ALEB gene dosage assay by real-time polymerase chain reaction on two DNA samples from
patients and one from a control subject (calibrator). From the C; of each sample, the N Ex22 value was calculated as described
in Patients and meithods. Each DNA sample was analyzed in trniplicate, and the results for one analysis are shown here. Sample
IC557 bears a heterozygous deletion of exon 22 (NEx22 =0.47), while exon 22 1s not deleted in sample IC2171 (NEx22 = | .03).

Barrois M et al. Clin Genet 2004 (www)
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