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Transcriptional noise is known to play a crucial role in heterogeneity in bacteria and yeast.
Mammalian macrophages are known to exhibit cell-to-cell variation in their responses to pathogens,
but the source of this heterogeneity is not known. We have developed a detailed stochastic model of
gene expression that takes into account scaling effects due to cell size and genome complexity. We
report the results of applying this model to simulating gene expression variability in mammalian
macrophages, demonstrating a possible molecular basis for heterogeneity in macrophage signalling
responses. We note that the nature of predicted transcriptional noise in macrophages is different from
that in yeast and bacteria. Some molecular interactions in yeast and bacteria are thought to have
evolved to minimize the effects of the high-frequency noise observed in these species. Transcriptional
noise in macrophages results in slow changes to gene expression levels and would not require the type
of spike-filtering circuits observed in yeast and bacteria.
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1. BACKGROUND
White blood cells, such as macrophages, recognize
microbial pathogens via the innate immune receptors,
of which the Toll-like receptors (TLRs) are critical
members (Takeda et al. 2003). Each TLR recognizes
specific features of pathogens and differentially acti-
vates inflammatory and other immune responses via a
regulated series of events that tailor defences to deal
with the particular threat. Inflammation can lead to
multiple outcomes: resolution of the infection and
complete restoration of tissue architecture, tissue
destruction (scarring), ongoing (chronic) inflam-
mation, initiation of new inflammatory responses
(autoimmunity) and failure to control the infection.
Moreover, past and concurrent signalling events can
also influence these outcomes, depending on duration
and intensity (Aderem et al. 1986; Sato et al. 2000;
Gordon 2003).

TLR signalling is well-characterized in terms of
inputs (microbial ligands) and outputs (macrophage
coordination of immune responses), but not in terms of
the signalling and transcriptional regulatory mechan-
isms that orchestrate the specific ligand-induced
responses. These molecular mechanisms presumably
account for stimulus- and time-dependent gene
regulation via feedback loops and specific circuitry
such as switches, multiplexers, amplifiers, oscillators,
etc.
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2. SPECIFICITY OF THE TLR-MEDIATED
MACROPHAGE RESPONSES TO MICROBES
When a macrophage encounters microbes, TLR
signalling alters the expression of hundreds of genes
(Nau et al. 2002). The highly specific response of TLRs
to different molecular identifiers of pathogens (e.g.
lipopolysaccharide, dsRNA, bacterial flagellin, CpG
DNA) is well documented. Signalling is induced by the
recruitment of proximal adapter molecules to the TLR
cytoplasmic domains (figure 1). Several TLR adapters
have been identified, and it is hypothesized that
selective adapter recruitment underlies the specificity
of signal transduction (Horng et al. 2002; Yamamoto
et al. 2002, 2003; Hoebe et al. 2003). However, the
majority of the approximately 30 known signal
transduction proteins downstream of the adapters are
used by all TLRs. Thus, the manner in which different
cellular responses are generated by a common set of
signalling elements remains mysterious. The macro-
phage’s recent history also regulates the TLR pathway.
Prior exposure to microbial products, such as lipopo-
lysaccharide, dramatically alters responses, and
depending on dose and timing, leads to the phenomena
of priming (increased sensitivity subsequent to a small
initial stimulation; Aderem et al. 1986) and tolerance
(adaptation to long-term stimulation; Sato et al. 2000).
3. MACROPHAGE DIVERSITY
An additional complexity in modelling the TLR
pathway is that macrophage populations are known to
be heterogeneous in terms of cellular state and
response (Hume 2000; Ravasi et al. 2002; Hoebe
et al. 2003) as illustrated in the example cells in figure 2.
Such heterogeneity could be due to a number of factors
q 2006 The Royal Society
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Figure 1. Outline of the TLR signalling pathway. Shown are a subset of the ligands, TLRs, proximal adapters, signalling
machinery and transcription factors. The phosphorylation (P) or ubiquitination (U) states of molecules are indicated, as are the
known interactions (lines) between molecules or complexes. Arrows indicate interfaces between signalling and the activation of
transcription. The colour-coding of the signalling molecules indicates the specificity (and overlap) in their use by the different
TLRs. For example, TLR3 uses TRIF, and TLR9 uses MyD88, while TLR4 uses TRIF, TIRAP and MyD88.
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including: (i) inherited differences in DNA structure or

cellular protein profile; (ii) a unique past history that
drives individual cells to be in different stable states that
are maintained through regulatory networks control-

ling mRNA and protein levels; and (iii) intrinsic noise
in gene expression patterns due to the stochastic nature

of transcription and translation, evident particularly at
low copy numbers.

It is well established that measurement of cell-
averaged responses in heterogeneous populations of
cells can be highly misleading (McAdams & Arkin

1997; Vilar et al. 2003). For example, a recent study
of the p53 pathway (Lahav et al. 2004), showed that

what appear to be damped oscillations in cell
population assays are actually different numbers of
equal-sized pulses in individual cells. It is, therefore,

important to develop single-cell models that provide
experimentally testable, mechanistic and quantitative

explanations of cellular heterogeneity (Rosenfeld
et al. 2005).
Phil. Trans. R. Soc. B (2006)
4. STOCHASTIC NOISE IN GENE EXPRESSION
In bacteria, seminal studies (McAdams & Arkin 1997;
Ozbudak et al. 2002; Swain et al. 2002) have

demonstrated that inherent stochastic noise in gene

expression (due to small numbers of molecules,
thermal noise, etc; referred to as intrinsic variability),

as well as variability in cellular transcription factor
activity levels (e.g. inherited factor concentrations;

referred to as extrinsic variability), can result in cellular

heterogeneity. A recent study (Raser & O’Shea 2004)
measured comparable levels of gene expression varia-

bility in yeast. The study also showed that the kinetics
of individual steps in gene expression, such as

transcription factor complex formation, RNA poly-
merase recruitment, and translational efficiency, can

vary the amount of intrinsic noise in gene expression

several fold.
As Raser and O’Shea point out, intrinsic gene

expression noise has been invoked as a source of
phenotypic variation in a number of very different
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Figure 2. (a)–(d ) Macrophage heterogeneity in signalling. Video microscopy of a clone of two individual RAW 264.7
macrophage cells expressing human-IkBa-EGFP during stimulation with 1 mg mlK1 dsRNA (a ligand that binds Toll-like
receptor 3). The decline in EGFP fluorescence (cell marked by red arrow) is indicative of IkBa degradation during signalling
leading to NF-kB activation. (e) Quantification of IkBa degradation in two individual cells. The fluorescence of each cell in
(a)–(d ) was quantified and normalized to its initial value. Note how IkBa degradation starts at the same rate in both cells, then at
about 40 min the cell on the right suddenly degrades its IkBamuch faster and further than the cell on the left. The delayed onset
of differential behaviour is consistent with the hypothesis that the difference between the two cells may be due to transcriptional
noise in genes whose products interact with the signal transduction pathway upstream of IkBa.
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settings: the lambda phage lysis–lysogeny switch (Arkin

et al. 1998), phase variation in bacteria (Hallet 2001),

receptor expression on mammalian olfactory neurons

(Serizawa et al. 2003) and tumour formation (Magee

et al. 2003). Does it also underlie macrophage

heterogeneity?

As we (Orrell & Bolouri 2004; de Atauri et al. 2005)
and others (Becskei & Serrano 2000; Morishita &

Aihara 2004) have shown, intrinsic noise can be filtered

out by some intra-cellular biochemical networks (e.g.

negative feedback, dimerization). Extrinsic variability

leading to cells being in different states can arise from

stochastic and deterministic origins. Stochastic differ-

ences in cellular content could arise from non-

deterministic processes such as the numbers of

molecules, molecular complexes, or organelles inher-

ited during cell division. Deterministic differences

could occur through cell–cell interactions, or through

processes such as DNA re-arrangement, or chromatin

remodelling during cell division. Another extrinsic

source of variability in macrophages could be that

each macrophage senses a slightly different amount of

ligand (for example due to expression of different

numbers of receptors), and multiple ultra-sensitive

thresholds in the signal transduction pathway act as a
Phil. Trans. R. Soc. B (2006)
decision tree, distributing macrophage responses

according to the amounts of ligand-sensed.

Intuitively, one may expect much less intrinsic noise

in larger mammalian cells. This intuition is principally

based on a scaling argument. Figure 3 compares the

volumes of four cell types. Yeast cells are approximately

10 times larger (by volume) than bacteria. Macro-

phages are approximately 1000 times larger (by

volume) than Escherichia coli. Literature reports of

mRNA and protein copy numbers in each cell type

suggest that these copy numbers scale with the cell

volume (Neidhardt 1996; Ghaemmaghami et al. 2003;
Lehner & Cresswell 2004). The coefficient of variation

of the Poisson distribution decreases with increasing

average copy number, so we might expect macrophages

to be virtually free of intrinsic variability. In addition, if

the half-life of a protein is very long (as it can be in

mammalian cells), then gene expression (within a

single-cell context) can stop after a short burst of

synthesis. From that point onwards, there will be no

noise due to stochastic gene expression. Moreover, the

number of copies of extremely slowly degrading

proteins tends to be very high, so one might argue

that the average behaviour is essentially noise-free.

Finally, we note that the number of copies of most
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Figure 3. Genome size versus cell size. Comparison of
genome size and cell size, for four different cell types: the
bacterium Escherichia coli; the yeast Saccharomyces cerevisiae;
the sea urchin Strongylocentrotus purpuratus; a human
macrophage cell. To a first approximation, cell volume and
genome size appear to scale linearly from bacteria, to yeast,
simple animals (sea urchin embryonic cells) and mammalian
macrophages. On the whole, contents of the larger cells
appear to scale such that the total amount of chemical noise is
approximately the same in all four cell types (see figure 5).
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genes is limited to one in E. coli and haploid yeast, and
two in diploid yeast and in macrophages; this is
especially true for transcription factor genes (Nelson
et al. 2004).

As we will demonstrate, the intuition that macro-
phage cells must have very low cell-to-cell variability
due to the above size-scaling arguments turns out to be
incorrect. There are two reasons for this. Firstly, as
shown in figure 3, genome size grows even faster than
volume as we go from E. coli to yeast to macrophages.
This sharply increases the number of non-specific
transcription factor–DNA interactions. As a result, we
may expect transcription factor occupancy on cis-regu-
latory DNA to be approximately at the same level in all
four organisms considered. Secondly, transcription
factors, because they need to be regulated dynamically,
tend to have shorter half-lives and fewer copies per cell
than most structural genes, and are thus a source of
extrinsic noise for the genes they regulate.
5. MODEL OF GENE EXPRESSION AT
THE SINGLE-GENE SCALE
We have constructed stochastic models of gene
expression in macrophages, yeast and bacteria. Our
models differ from previous models (McAdams &
Arkin 1997; Hasty et al. 2000; Ozbudak et al. 2002;
Swain et al. 2002; Raser & O’Shea 2004) in that,
instead of Langevin equations and/or formulations
based purely on first order kinetics, we stochastically
simulate multiple steps in transcription and translation
and perform statistically large numbers of single-cell in
silico experiments. Furthermore, we take into account
the effect of non-specific binding of transcription
factors on the average fractional activation of a gene
(Bolouri & Davidson 2003). A summary of the steps
in our model of gene expression is given in figure 4.
Phil. Trans. R. Soc. B (2006)
Due to the time delays for transcription and trans-

lation, our stochastic model is non-Markovian (Gibson
& Bruck 2000). The complete description of our model

is presented, in the Dizzy model definition language

(Ramsey et al. 2005), in the electronic supplementary
material. Our bacteria, yeast and macrophage models

differ from one another by more than cell and genome
size; as far as possible, we employ species-specific

parameters as described in table 1.
To distinguish between intrinsic and extrinsic noise,

our model contains two similar reporter genes (osten-

sibly coding for cyan and yellow fluorescent protein,
respectively) with identical promoters and identical

fractional activation of gene expression. The rates of
initiation of transcription and translation, and the rates

of degradation for mRNA and proteins were assumed

to be the same for the two reporters. The example
promoter used in the studies reported herein has

cis-elements for two transcription factors that bind
cooperatively. Both factors must be bound for tran-

scription to occur, in the model used in this study.
However, our method is general and can capture

regulation by multiple transcription factors. We used a

Monte Carlo technique to simulate the stochastic
dynamics of this system, under steady-state conditions,

at different fractional levels of gene activation. With
parameters appropriate to bacteria and yeast, our

theoretical model of expression noise captures the

reported characteristics of transcriptional noise well.
Figure 5 shows a side-by-side comparison of our

simulation results with experimental observations for
E. coli and yeast. These results demonstrate that our

model of transcription for yeast and bacteria captures
the relationship between intrinsic and extrinsic noise,

and the dependency of the intrinsic noise magnitude on

the cell-averaged gene expression level.
We adapted our eukaryotic model of transcription

and translation to the macrophage system by altering
the parameters in the model to values appropriate to a

mammalian macrophage. Table 1 lists the parameters

which we extracted from the literature. Many of these
parameters are known to adequate accuracy for our

needs (e.g. the size of the genome, codon-lengths of
specific proteins). Others appear to have little effect on

our predictions (e.g. the numbers of polymerase and
ribosome molecules reported are well in excess of the

numbers of transcribing genes and transcripts, respect-

ively). By far the most critical parameters of the models
are (i) the rate of initiation of transcription and

translation; and (ii) the half-lives of mRNAs and
proteins. Half-lives are known to vary considerably

across the transcriptome and proteome (Pratt et al.
2002; Wang et al. 2002). However, for the studies
reported here the important issue is ratio of half-lives of

similar proteins in protozoans and mammals. We note
that—due to dilution caused by rapid cellular growth

(cellular volume approximately doubling prior to every

cell division)—the half-lives of mRNA and proteins in
budding yeast and bacteria during exponential growth

is necessarily less than the cell division time. Since
mammalian cells such as macrophages grow and divide

an order of magnitude more slowly, their protein
half lives can be correspondingly longer, which leads
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Transcriptional noise in macrophages S. Ramsey and others 499
to qualitatively different transcriptional noise

characteristics.

Using our model system of two reporter genes, we

investigated whether a macrophage gene (at an

equivalent fractional level of activation) has less

intrinsic noise than a yeast or bacterial gene. With a

fractional occupancy of approximately 10–15% in all

three models (bacteria, yeast and macrophage), we

found that the coefficient of variation (the standard

deviation divided by the mean) for the intrinsic noise

contribution to protein abundance was not significantly

different. The results for all three model organisms are

shown in figure 6; the spread of data transverse to the

axis of equal-gene expression represents variation due

to intrinsic gene expression noise.

Next, we studied the stochastic dynamics of

transcriptional activation. We found that in bacteria

and yeast, at low gene activation, protein abundances

can exhibit large transient spikes. This is due to the

comparatively short lifetime for protein and mRNA in

those systems, and the predominance of intrinsic noise

in the mRNA concentration at low expression levels.

Figure 7b shows an extreme example in the yeast model

for a gene at basal (very low) activation. The protein

abundance is seen to exhibit significant transient spikes

that are highly correlated (with a fixed delay) with the

previous production of a completed mRNA transcript.

Note the simulation was performed over an artificially

long period in order to capture a few examples of such

activity spikes.
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In the macrophage, we found that the protein
abundance showed generally lower-frequency (slowly
varying) noise. Figure 8 compares representative
simulated protein levels for a macrophage gene with
parameters typical of transcription factors. Transcrip-
tion was activated at time zero. We simulated the
dynamics of the model over a period of approximately
48 h, typical of periods over which macrophages are
experimentally assayed. Note that the variability in
each trace is considerable, and that it occurs on a very
slow time-scale. The lack of high-frequency noise, as
compared to simulated single-cell protein abundances
in prokaryotes, is due to the relatively slow mRNA and
protein degradation in mammalian cells. The upper
two curves (red and blue) represent the gene at just 5%
more transcriptional activity (higher transcription
factor occupancy) than the bottom two curves (black
and green). Note that, as indicated by the areas
highlighted in red and blue, the two slightly more
active genes have protein levels more than 10 times in
excess of the 5% less activated genes for periods
exceeding a day. The long-term average expression
level of the less active gene pair is only about 30% lower
than that of the more active gene pair. Thus, the
intrinsic expression noise for each gene, when added to
small, potentially stochastic variations in cellular
content (here 5%) can result in very clear heterogeneity
in cellular states as defined by gene expression levels.

To better understand the role of transcriptional
noise in macrophages, we systematically compared the
steady-state noise profile of a single gene for the three
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Figure 5. Intrinsic and extrinsic noise. (a, b) Intrinsic noise shows up as the spread of points along the yZKx axis and extrinsic
noise causes the spread along the yZx axis. This is because extrinsic noise (alone) causes the two reporters to vary in an identical
fashion; any differences between the two reporters (in the same cell) is attributed to intrinsic noise. An E. coli gene at low
expression levels. (a) Experimental data reproduced with permission from (Elowitz et al. 2002). The data shows less intrinsic
noise for strain M22 than for strain D22. (b) Simulation of the same scenario. (c, d ) A yeast gene at high expression levels.
(c) experimental data reproduced with permission from Raser & O’Shea (2004). (d ) simulation of the same scenario. Here, CFP
means cyan fluorescent protein, and YFP means yellow fluorescent protein. In the simulations, ‘CFP’ and ‘YFP’ are just the
names given to our two in silico reporter genes.

Table 1. Parameters of our stochastic model of gene expression in a mammalian macrophage.

parameter value source

genome size 2.9!109 bp (IHGSC 2004)
number of genes 25 000 (IHGSC 2004)
typical coding region length 3000 nucleotides (Strachan & Read 1999)
transcription translocation rate 1800 nucleotides minK1 (Howe et al. 2003)
minimum inter-transcript distance on DNA 140 nucleotides (Davidson 1986)
RNA polymerase molecules/cell 30 000 (Borggrefe et al. 2001)
maximal transcription initiation rate 1800/140Z12.8 minK1 (derived)
t1/2 mRNA 600 min; non-transcription factors (Yang et al. 2003)
t1/2 mRNA 100 min; transcription factor genes (Yang et al. 2003)
ribosome molecules per cell 6!106 (Lehner & Cresswell 2004)
maximal translation initiation rate 300/26.6Z11.3/(min*mRNA) (derived)
translation translocation rate 300 codons minK1 (Princiotta et al. 2003)
minimum inter-ribosome distance 26.6 codons (McAdams & Arkin 1997)
typical protein length 470 codons (Lodish et al. 2000)
t1/2 protein 24 h for non-degrading proteins (Lehner & Cresswell 2004)
t1/2 life protein 50 min for rapidly degraded proteins (Lehner & Cresswell 2004)
t1/2 life protein 200 min for a notional average protein (Lehner & Cresswell 2004)
cell volume 5!10K12 [ (Freitas 2003)
average number of RNA molecules per cell 0.2–1.0!106 (Nowakowski-Gashaw et al. 2002)
average number of protein molecules per

gene
430 000 (Lehner & Cresswell 2004)
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model systems (bacteria, yeast and macrophage) at

steady-state. A large ensemble of 7500 stochastic
simulations was used, to ensure accuracy in computing

the standard deviation and average protein abundance.
Figures 9 and 10 summarize our findings for the cross-

species comparison of single-gene expression. In
figure 9, we display the average mRNA level, protein

level, coefficient of variation of the protein level
(standard deviation divided by the mean) and the

Fano factor of the protein level (the ratio of the variance
to the mean). While the coefficient of variation in the

protein level is slightly less in macrophages than in yeast
and bacteria, the magnitude of protein abundance
Phil. Trans. R. Soc. B (2006)
noise, given by the Fano factor is twofold higher in

macrophages. A Poisson process will result in a Fano
factor of 1; the large Fano factor for macrophages

indicates a high degree of variability. For protein
abundance, a related measure of noise is the ‘burst

size’ of protein production, which is the number of
proteins produced over the lifetime of an mRNA

transcript (Ozbudak et al. 2002). In our model, the
protein burst size is determined parametrically, and is

99.25, 1004.6 and 5437.4, respectively, for bacteria,
yeast and macrophage (irrespective of activation level).

Considering the data in figure 2e, the twofold higher
noise scale in macrophages could lead to considerable
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Figure 10. Cross-species comparison of intrinsic and extrinsic
noise. Based on a single-gene stochastic simulation at steady-
state, the total coefficient of variation for protein abundance
was measured. Using the estimation formula for intrinsic
noise hintZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

burst=prot
p

, where ‘burst’ is the burst parameter
(given in the main text), and ‘prot’ is the mean protein
abundance, we estimated the contribution of intrinsic noise to
the total coefficient of variation. The remaining component of
the noise is attributed to extrinsic noise (from the transcrip-
tion factor concentration fluctuations).
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long-term heterogeneity, despite the large average
abundance of a typical structural macrophage protein.

Using the formula of (Ozbudak et al. 2002), we
estimated the intrinsic noise contribution to the
variance in the protein abundance as the square root
of the ratio of the ‘burst parameter’ to the average
protein abundance. We compared this intrinsic noise
estimate to the total average variation observed in the
simulation, for the three species and conditions of 10,
50 and 90% gene activation. The results are summar-
ized in figure 10 and confirm our observation that
intrinsic noise coefficients in yeast, bacteria and
macrophage are comparable at 10% activation. They
also show that extrinsic noise makes an important
contribution at 10% activation, but is insignificant at
90% activation.
6. IMPLICATIONS OF TRANSCRIPTIONAL
NOISE FOR ORGANIZATIONAL PRINCIPLES
IN MACROPHAGES
We showed above that macrophages can exhibit
significant gene expression noise, and that they have
fundamentally different noise characteristics from yeast
and bacteria. In this section, we speculate that this
difference can lead to different evolutionary pressures
and hence different organizational principles in macro-
phage genetic regulatory networks. We illustrate our
argument with a specific example: the feed-forward
loop (FFL) network motif, which has been found to be
prevalent in bacterial and yeast regulatory networks
(Milo et al. 2002; Shen-Orr et al. 2002; Luscombe et al.
2004). In the context of a genetic regulatory network,
the FFL can consist of three genes arranged in a three-
gene cascade, with the first gene additionally acting as
an input to the third gene.
Phil. Trans. R. Soc. B (2006)
Figure 11a shows a gene network diagram with a
FFL. Depending on whether each link in the motif
upregulates or downregulates its target, and whether
the third gene’s inputs act as a logical AND or OR, the
FFL can act as either a sign-sensitive delay or a sign-
sensitive accelerator, and the output can either be
inverted or non-inverted (Mangan & Alon 2003). Sign
sensitivity means that the delay effect depends on the
sign of the input transition, i.e. whether the input
changes from the ‘high’ to the ‘low’ state, or vice versa.

In E. coli and yeast, the most abundant FFL motif
has ‘coherent’ upregulation for all three links
(Mangan & Alon 2003). In this configuration, the
FFL acts as a delay when the input to the first gene goes
from a low (inactive) state to a high (active) state.When
the third gene’s cis-regulatory inputs combine in a
logical AND, this configuration is a sign-sensitive delay,
without output inversion. It can act as a filter to
suppress spikes when the first gene’s input is normally
in the low state. Simulation results demonstrating this
effect, for a simulated gene cascade implanting a FFL
in yeast, are shown in figure 11b. The simulation results
illustrate the noise suppression that a FFL can exert in
the case of high-frequency burst-like noise on top of a
low steady state input. We note, however, that unlike a
low-pass filter, the FFL as described above would not
delay a rapid transition of the input from the high state
to the low state; in this sense, the FFL is functionally
quite distinct from a feedback-type noise filter. Given
that E. coli and yeast tend to have high intrinsic
transcriptional noise, it is possible that the prevalence
of this particular FFL type may be explained by the
need to suppress propagation of spurious noise spikes
through a regulatory cascade, so that downstream
genes will not be activated unless the upstream
controller genes switch to the high state for a minimum
duration.

Recent studies have indicated that the FFL motif is
also prevalent in mammalian genetic regulatory net-
works. A recent chromatin–immunoprecipitation study
(Odom et al. 2004) mapped out the regulatory network
controlled by the HNF family of transcription factors,
in human pancreas and liver cells. The authors
demonstrated that HNF6 is the controller of a FFL
regulating the gene PCK1. Another study (Hinz et al.
2000) reported evidence that PGE2 acts through a
FFL to regulate the expression of its own synthesizing
enzyme (COX-2) in RAW 264.7 cells. The authors
speculate that the purpose of this feed-forward
interaction may be to modulate COX-2 expression in
macrophages within inflamed tissues. These studies
lead us to consider the general implications of a FFL in
a genetic regulatory network within a macrophage. The
propensity of gene expression within a macrophage to
exhibit a slowly varying protein abundance (as shown
in figure 7 of this paper), as opposed to the high-
frequency burst-type noise observed in prokaryotes,
would seem to obviate the need for a FFL implement-
ing a sign-sensitive delay. The delay effect mediated by
the middle gene (gene Y in figure 11a) would need to
be of the order of several hours to act as a filter for the
type of expression noise we see in macrophages. Thus,
it seems unlikely that the FFL motif acts a transcrip-
tional noise filter in macrophages. Perhaps the FFL
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within a macrophage regulatory network helps accel-
erate the de-activation of the downstream gene (Z),

after the upstream inputs have switched to a low state.
In this way, the FFL motif would ameliorate the effect

of long protein half lives in mammalian cells.
7. MATERIAL AND METHODS
The human IkBa cDNAwas amplified from peripheral-blood

leucocytes and cloned into the pEF6/V5-His vector (Invi-

trogen), in frame with EGFP (Clontech), and expressed

under the control of the EF1-a promoter. This construct was

electroporated into RAW 264.7 macrophage cells and a high-

expressing clone (#28) was selected by flow cytometry and

expanded. Cells were cultured in RPMI 1640/10% FCS

including 25 mM HEPES and stimulated with 1 mg mlK1

pI.pC dsRNA (Sigma). Time course images were taken on a

Leica TCS–SP2 laser-scanning confocal microscope. Fluor-

escence was excited at 488 nm and emission measured from

500 to 550 nm at 40! magnification with the detection

pinhole at 600 mm diameter to give a 14 mm depth-of-field.

Whole-cell fluorescence was measured as follows. A mask

was created using the entire series of images to define the

extent of cellular motion over the course of the experiment.

All contiguous pixels which were more than 10% above the

background in any image in the series were included in the

mask region. After background subtraction, the total flux

within this boundary was taken as a measure of the total

amount of IkBa-GFP within each cell.
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All simulations were carried out with the Dizzy kinetic

simulation modelling environment (Ramsey et al. 2005). An

ensemble size of 7500 was used for the stochastic simulations.

The stochastic simulations were carried out using the

Gibson–Bruck simulator option, on an Intel Pentium 4

workstation running the Sun Java virtual machine v.1.4.2

under Fedora Core 1 Linux with kernel v.2.4.22. Steady-state

was obtained using a fifth order Dormand–Prince ODE

solver with fourth order error estimation. The relative and

absolute error tolerances for the ODE solver were 0.0001.
8. DIZZY STOCHASTIC SIMULATION SOFTWARE
Dizzy (Ramsey et al. 2005) is a stochastic simulation
software package and model description language for
systems of interacting biochemical species. Dizzy’s
simulation engine includes Gillespie’s original exact
stochastic algorithm (Gillespie 1976), the Gibson–
Bruck optimization of this algorithm (Gibson & Bruck
2000), and the ‘Tau-leap’ approximate accelerated
algorithm (Gillespie 2001). Dizzy is a stable software
package which we have used extensively over the past
year to model and simulate multi-gene networks
stochastically (de Atauri et al. 2005). Dizzy is written
in the Java programming language, and will run on any
computing platform that has a Java 1.4 runtime
environment. It is available under a free software and
open-source license (the Lesser General Public
License) and can be found on our group’s web page
(magnet.systemsbiology.net/dizzy).

http://magnet.systemsbiology.net/dizzy
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An especially pertinent feature of Dizzy is that it
allows user-defined library elements: models can be
constructed in a modular, hierarchical fashion. We
used this feature of Dizzy to construct an organism-
specific, parameterized model of all the key steps in
gene expression. Changing the parameters of the model
allows us to model genes with different characteristics
such as: number of regulatory factors, their concen-
trations over time, and the nature of their kinetic
interactions; the rate of RNA polymerase recruitment
and transcription initiation by the transcription factor
complex; the rate of transcription along DNA; the
length of transcribed DNA; the length of the mRNA,
mRNA half-life; the rate of ribosome recruitment and
initiation of translation; the rate of translocation along
the mRNA; and protein half life. A second feature of
Dizzy is the ability to estimate, using ODE simulation
and the symbolic Jacobian matrix, the steady-state
stochastic fluctuations for all species in the model
(Orrell et al. 2005). This feature has been successfully
applied to estimate the steady-state fluctuations in a
nonlinear biochemical model (with 55 reaction
channels and 26 chemical species) describing the
galactose uptake pathway in yeast.

This work was supported in part by grant #10830302 from
the National Institute of Allergy and Infectious Disease.
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