Contig Assembly

ATCGATGCGTAGCAGACTACCGTTACGATGCCTT... TAGCTACGCATCGTCTGATGGCAATGCTACGGAA. .

David Wishart, Ath 3-41 david.wishart@ualberta.ca

DNA Sequencing

Principles of DNA Sequencing

Denature with heat to produce ssDNA

The Secret to Sanger Sequencing

- Structure of the dideoxynucleotide

- structure of a ddNTP

Principles of DNA Sequencing

Principles of DNA Sequencing

Capillary Electrophoresis

Multiplexed
Fluorescent

ABL 3700

\qquad

High Throughput DNA Sequencing

Large Scale Sequencing

- Goal is to determine the nucleic acid sequence of molecules ranging in size from a few hundred bp to $>10^{9}$ bp
- The methodology requires an extensive computational analysis of raw data to yield the final sequence result

Shotgun Sequencing

- High throughput sequencing method that employs automated sequencing of random DNA fragments
- Automated DNA sequencing yields sequences of 500 to 1000 bp in length
- To determine longer sequences you obtain fragmentary sequences and then join them together by overlapping
- Overlapping is an alignment problem, but different from those we have discussed up to now

Shotgun Sequencing

Isolate Chromosome
 into Fragments

Clone into
Seq. Vectors

Sequence

Shotgun Sequencing

Sequence Chromatogram

Assembled Sequence

Analogy

- You have 10 copies of a movie
- The film has been cut into short pieces with about 240 frames per piece (10 seconds of film), at random
- Reconstruct the film

Multi-alignment \& Contig Assembly

ATCGATGCGTAGCAGACTACCGTTACGATGCCTT...
TAGCTACGCATCGTCTGATGGCAATGCTACGGAA. .

TAGCTACGCATCGT
TAGCAGACTACCGTT
GTTACGATGCCTT

Multiple Sequence Alignment

Consensus:	CSNLSTCULGKLSQDLHKLQTFPRT--GAG-P
1: sockeye	CSNLSTCVLGKLSQDLHKLQTFPRTNTGAGUP
2: chum	CSNLSTCULGKLSQDLHKLQTFPRTNTGAGVP
3: pink	CSNLSTCULGKLSQDLHKLQTFPRTNTGAGVP
4: coho	CSNLSTCMLGKLSQDLHKLQTFPRTNTGAGVP
5: pig	CSNLSTCULSAYORNLNNFHRFSGMGFGPETP
6: bovine	CSNLSTCULSAYTKDLNNYHRFSGMGFGPETP
7: eel	CSNLSTCULGKLSQELHKLQTYPRTDUGAGTP

Multiple alignment of Calcitonins

Multiple Sequence Alignment

- A general method to align and compare more than 2 sequences
- Typically done as a hierarchical clustering/alignment process where you match the two most similar sequences and then use the combined consensus sequence to identify the next closest sequence with which to align

Multiple Alignment Algorithm

- Take all " n " sequences and perform all possible pairwise (n/2(n-1)) alignments
- Identify highest scoring pair, perform an alignment \& create a consensus sequence
- Select next most similar sequence and align it to the initial consensus, regenerate a second consensus
- Repeat step 3 until finished

Multiple Sequence Alignment

- Developed and refined by many (Doolittle, Barton, Corpet) through the 1980's
- Used extensively for extracting hidden phylogenetic relationships and identifying sequence families
- Powerful tool for extracting new sequence motifs and signature sequences
- Also applicable to DNA contig assembly

Contig Assembly \ddagger Multiple Alignment

1. Only accept a very high sequence identity
2. Accept unlimited number of "end" gaps
3. Very high cost for opening "internal" gaps
4. A short match with high score/residue is preferred over a long match with low score/residue

Contig Assembly Algorithm

- Read, edit \& trim DNA chromatograms
- Remove overlaps \& ambiguous calls
- Read in all sequence files $(10-10,000)$
- Reverse complement all sequences (doubles \# of sequences to align)
- Remove vector sequences (vector trim)
- Remove regions of low complexity
- Perform multiple sequence alignment

Contig Alignment - Process

Reading DNA Chromatograms

Gel

ABI Chromatogram

Typical Raw Data

Chromatograms (Problems)

- Degradation of gel resolution (Pile-up or Band Broadening)
- Diminishment or excess of fluorescence intensity (too little or too much DNA tmplte)
- Differential overlap (large peak followed by a small one , ie. "G" dropouts (small G following a big A peak)
- Homopolymeric stretches of A's and T's
- Inappropriate spacing (contaminant DNA or poor/noisy primers causing random priming)
- High GC content or GC rich regions
- Secondary structure or inverted repeats of the DNA

Band Broadening

Diminishing Intensity

Too Much DNA Template

High G-C Content

- $>60 \%$ GC content may be difficult to sequence (leads to pile-up)
- Dye terminator performs better than dye primer
- Easiest modification is to add 5\% DMSO final concentration to the reaction mix
- Sequence the opposite strand to help resolve ambiguities

GC Pile Up

Inverted/Extended Repeats

- An abrupt loss of signal usually signifies a DNA sequence structure problem, due to the inability of the enzyme to proceed through the problem area
- 5\% DMSO sometimes helps
- Treat these the same way as high GC content regions

Repeats

- Longer repeat sequences such as variable tandem repeats of 30 or more bases repeated many times are usually difficult to deal with
- AG repeat sequences can be problematic because Taq FS produces a weak G signal after A in terminator data
- More examples at
http://www.abrf.org/Other/ABRFmeetings/ABRF96/tutoria/4|

Weak G after A

Homopolymer Stretches

Base Calling

Imperfect Raw Data

- The data from sequencers varies in quality along the length of a single scan
- The base calls can be ambiguous, but there is still some information
- Need a quantitative analysis, not qualitative, to maximize information

Quality Factors

- Simplest approach is human inspection, but not automatable
- Although computationally more difficult, quantitative factors provide a significant improvement in the assembly process
- Particularly important in highthroughput sequencing projects

Human Inspection

Automated Base Calling with Phred

- The Phred software reads DNA sequencing trace files, calls bases, and assigns a quality value to each called base
- The quality value is a log-transformed error probability, specifically

$$
Q=-10 \log 10(\mathrm{Pe})
$$

- where Q and Pe are respectively the quality value and error probability of a particular base call

Phred

- The Phred quality values have been thoroughly tested for both accuracy and power to discriminate between correct and incorrect base-calls
- Phred can use the quality values to perform sequence trimming

Ewing B, Green P: Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Research 8:186-194 (1998)

Sequence Assembly Programs

- Phred - base calling program that does detailed statistical analysis (UNIX) http://www.phrap.org/
- Phrap - sequence assembly program (UNIX) http://www.phrap.org/
- TIGR Assembler - microbial genomes (UNIX) http://www.tigr.org/softlab/assembler/
- The Staden Package (UNIX) http://www.mrc-Imb.cam.ac.uk/pubseq/
- GeneTool/ChromaTool/Sequencher (PC/Mac)

Contig Assembly Algorithm

- Read, edit \& trim DNA chromatograms
- Remove overlaps \& ambiguous calls
- Read in all sequence files $(10-10,000)$
- Reverse complement all sequences (doubles \# of sequences to align)
- Remove vector sequences (vector trim)
- Remove regions of low complexity
- Perform multiple sequence alignment

Chromatogram Editing

Sequence Loading

Sequence Alignment

Assembly Parameters

- User-selected parameters

1. minimum length of overlap
2. percent identity within overlap

- Non-adjustable parameters

1. sequence "quality" factors

Phrap

- Phrap is a program for assembling shotgun DNA sequence data
- Uses a combination of user-supplied and internally computed data quality information to improve assembly accuracy in the presence of repeats
- Constructs the contig sequence as a mosaic of the highest quality read segments rather than a consensus
- Handles large datasets

Problems for Assembly

- Repeat regions
- Capture sequences from noncontiguous regions
- Polymorphisms
- Cause failure to join correct regions
- Large data volume
- Requires large numbers of pair-wise comparisons

Mutation Detection

Types of Mutations

SNPs \& Polymorphisms

SNPs (Single Nucleotide Polymorphisms)

- Single nucleotide polymorphisms or SNPs are DNA sequence variations that occur when a single nucleotide (A,T,C or G) in the genome sequence is altered
- For a variation to be considered a SNP, it must occur in at least 1% of the population
- If the frequency is less than 1\% (although this is somewhat arbitrary) then this variation is called a mutation
- SNPs are classified in three different ways...

Zygosity and SNPs

Homozygous WT

Heterozygous

SNPs

- SNPs account for about 90\% of all human genetic variation and are believed to occur every 100 to 300 bases along the 3-billion-base human genome
- Approximately 5 million of the ~ 10 million human SNPs have been catalogued
- SNPs may occur in exons, introns (non coding regions between exons) and intergenic regions (regions between genes)
- SNPs may lead to coding or amino acid sequence changes (non-synonymous) or they may leave the sequence unchanged (synonymous)

Synonymous vs. NonSynonymous SNPs

Hardy Weinberg Equilibrium

Hardy Weinberg Equilibrium

- True SNPs should follow Hardy Weinberg Equilibrium in that
- The choice of a mate is not influenced by his/her genotype at the locus/gene (random mating or panmixia)
- The locus/gene/SNP does not affect the chance of mating at all, either by altering fertility or decreasing survival to reproductive age

Deviations from HWE

- Marital assortment: "like marrying like"
- Inbreeding
- Population stratification: multiple subgroups are present within the population, each of which mates only within its own group (homogamy)
- Decreased viability of a particular genotype (hemophilia)

Measuring SNPs

- Classical sequencing (homozygotes)
- Chromatogram analysis (heterozygotes)
- Denaturing HPLC
- Rolling Circle Amplification
- Antibody-based detection
- Enzyme- or cleavage-based detection
- Mass spectrometry
- SNP chips or microarrays

Polymorphism in Connexin26 (CX26) - Common Cause of Deafness -- ID by Sequencing

Homozyogous for C

Heterozygous for T/C

The Finished Product

GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA TTACAGATTACAGATTACAGATTACAGATTACAGAT TACAGATTAGAGATTACAGATTACAGATTACAGATT ACAGATTACAGATTACAGATTACAGATTACAGATTA CAGATTACAGATTACAGATTACAGATTACAGATTAC AGATTACAGATTACAGATTACAGATTACAGATTACA GATTACAGATTACAGATTACAGATTACAGATTACAG ATTACAGATTACAGATTACAGATTACAGATTACAGA TTACAGATTACAGATTACAGATTACAGATTACAGAT

Shotgun Sequencing Summary

- Very efficient process for small-scale ($\sim 10 \mathrm{~kb}$) sequencing (preferred method)
- First applied to whole genome sequencing in 1995 (H. influenzae)
- Now standard for all prokaryotic genome sequencing projects
- Successfully applied to D. melanogaster
- Moderately successful for H. sapiens

NCBI Mapping \& Assembly

- Shotgun assembly doesn't always work (as was the case for the human genome)
- http://wwww.ncbi.nlm.nih.gov/genomel quidelbuild.html
- Describes the process used in the NCBI genome assembly and annotation process

Sequencing Successes

T7 bacteriophage completed in 1983 39,937 bp, 59 coded proteins

Escherichia coli completed in 1998
4,639,221 bp, 4293 ORFs
Sacchoromyces cerevisae completed in 1996
12,069,252 bp, 5800 genes

Sequencing Successes

Caenorhabditis elegans completed in 1998
95,078,296 bp, 19,099 genes
Drosophila melanogaster completed in 2000 116,117,226 bp, 13,601 genes

Homo sapiens
Final draft completed in 2003
3,201,762,515 bp, 31,780 genes

Genomes to Date

- 8 vertebrates (human, mouse, rat, fugu, zebrafish)
- 2 plants (arabadopsis, rice)
- 2 insects (fruit fly, mosquito)
- 2 nematodes (C. elegans, C. briggsae)
- 1 sea squirt
- 4 parasites (plasmodium, guillardia)
- 4 fungi (S. cerevisae, S. pombe)
- 200 bacteria and archaebacteria
- 1900+ viruses

Sequenced Genomes

http://www.genomenewsnetwork.org

