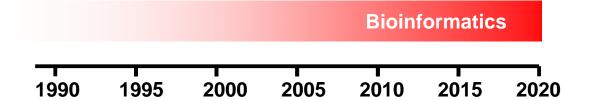
Proteomics & Bioinformatics Part I

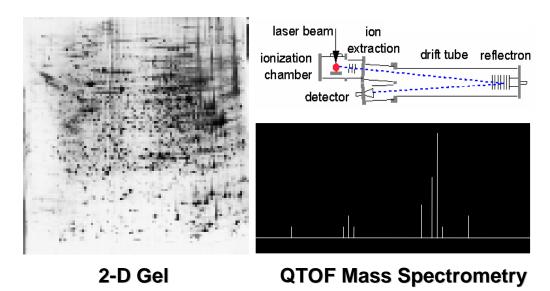
David Wishart
University of Alberta

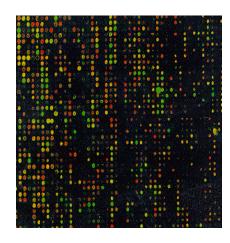

What is Proteomics?

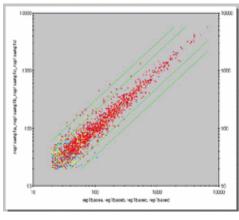
• Proteomics - A newly emerging field of life science research that uses High Throughput (HT) technologies to display, identify and/or characterize all the proteins in a given cell, tissue or organism (i.e. the proteome).

Proteomics & Bioinformatics

Genomics

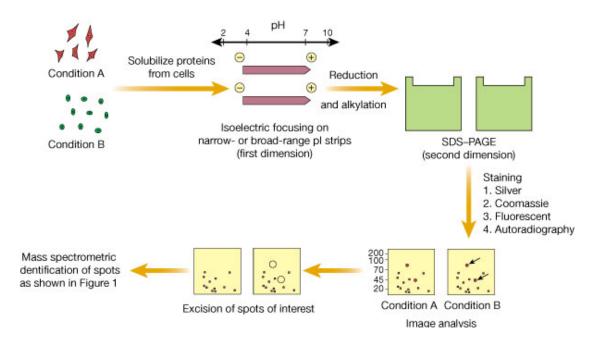

Proteomics

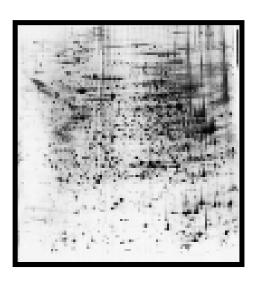

3 Kinds of Proteomics


- Structural Proteomics
 - High throughput X-ray Crystallography/Modelling
 - High throughput NMR Spectroscopy/Modelling
- Expressional or Analytical Proteomics
 - Electrophoresis, Protein Chips, DNA Chips, 2D-HPLC
 - Mass Spectrometry, Microsequencing
- Functional or Interaction Proteomics
 - HT Functional Assays, Ligand Chips
 - Yeast 2-hybrid, Deletion Analysis, Motif Analysis

Expressional Proteomics

Expressional Proteomics



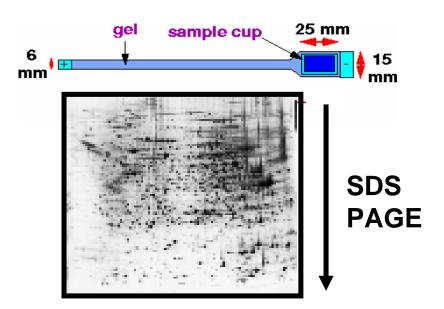

Expressional Proteomics

- To separate, identify and quantify protein expression levels using high throughput technologies
- Expectation of 100's to 1000's of proteins to be analyzed
- Requires advanced technologies and plenty of bioinformatics support

Electrophoresis & Proteomics

2D Gel Electrophoresis

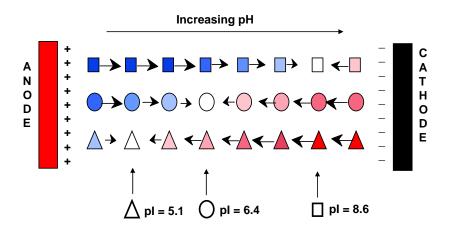
- Simultaneous separation and detection of ~2000 proteins on a 20x25 cm gel
- Up to 10,000 proteins can be seen using optimized protocols


Why 2D GE?

- Oldest method for large scale protein separation (since 1975)
- Still most popular method for protein display and quantification
- Permits simultaneous detection, display, purification, identification, quantification
- Robust, increasingly reproducible, simple, cost effective, scalable & parallelizable
- Provides pl, MW, quantity


Steps in 2D GE & Peptide ID

- Sample preparation
- Isoelectric focusing (first dimension)
- SDS-PAGE (second dimension)
- Visualization of proteins spots
- Identification of protein spots
- Annotation & spot evaluation


2D Gel Principles

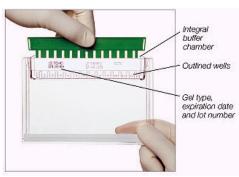
Isoelectric Focusing (IEF)

IEF Principles

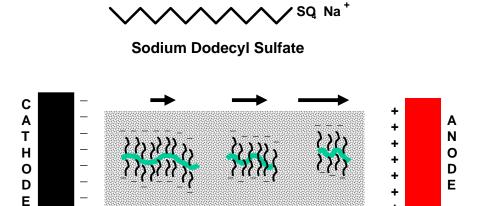
Isoelectric Focusing

- Separation of basis of pl, not Mw
- Requires very high voltages (5000V)
- Requires a long period of time (10h)
- Presence of a pH gradient is critical
- Degree of resolution determined by slope of pH gradient and electric field strength
- Uses ampholytes to establish pH gradient
- Can be done in "slab" gels or in strips (IPG strips for 2D gel electrophoresis)

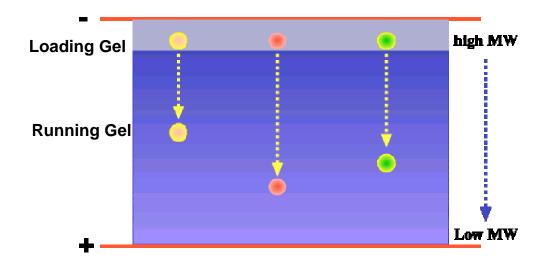
Steps in 2D GE & Peptide ID


- Sample preparation
- Isoelectric focusing (first dimension)
- SDS-PAGE (second dimension)
- Visualization of proteins spots
- Identification of protein spots
- Annotation & spot evaluation

SDS PAGE

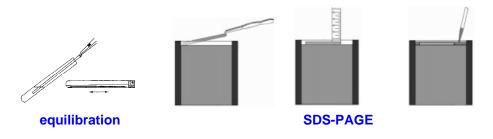


SDS PAGE Tools



SDS PAGE Principles

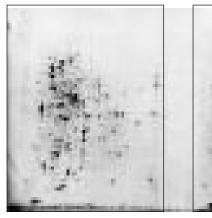
SDS-PAGE Principles

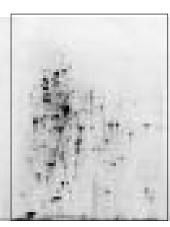

SDS-PAGE

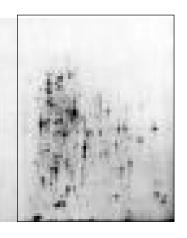
- Separation of basis of MW, not pl
- Requires modest voltages (200V)
- Requires a shorter period of time (2h)
- Presence of SDS is critical to disrupting structure and making mobility ~ 1/MW
- Degree of resolution determined by %acrylamide & electric field strength

SDS-PAGE for 2D GE

- After IEF, the IPG strip is soaked in an equilibration buffer (50 mM Tris, pH 8.8, 2% SDS, 6M Urea, 30% glycerol, DTT, tracking dye)
- IPG strip is then placed on top of pre-cast SDS-PAGE gel and electric current applied
- This is equivalent to pipetting samples into SDS-PAGE wells (an infinite #)


SDS-PAGE for 2D GE





2D Gel Reproducibility

Advantages and Disadvantages of 2D GE

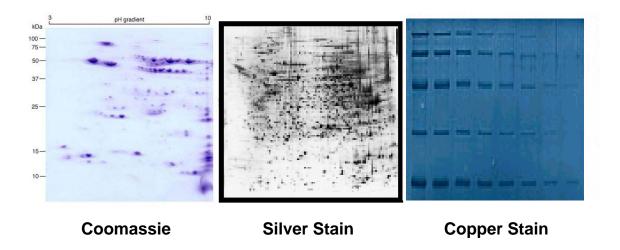
- Provides a hard-copy record of separation
- Allows facile quantitation
- Separation of up to 9000 different proteins
- Highly reproducible
- Gives info on Mw, pl and post-trans modifications
- Inexpensive

- Limited pl range (4-8)
- Proteins >150 kD not seen in 2D gels
- Difficult to see membrane proteins (>30% of all proteins)
- Only detects high abundance proteins (top 30% typically)
- Time consuming

Protein Detection

- Coomassie Stain (100 ng to 10 μg protein)
- Silver Stain (1 ng to 1 μg protein)
- Fluorescent (Sypro Ruby) Stain (1 ng & up)

$$CH_{2}-N$$

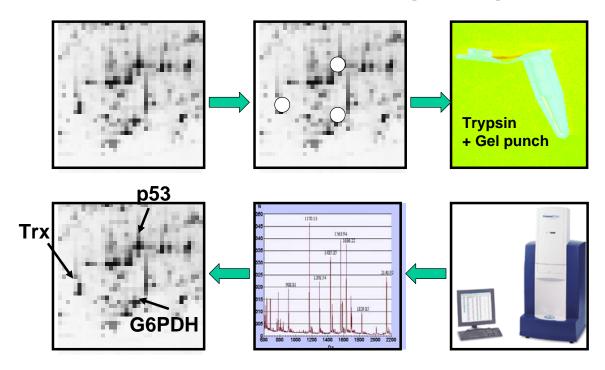

$$CH_{2}-N$$

$$CH_{3}$$

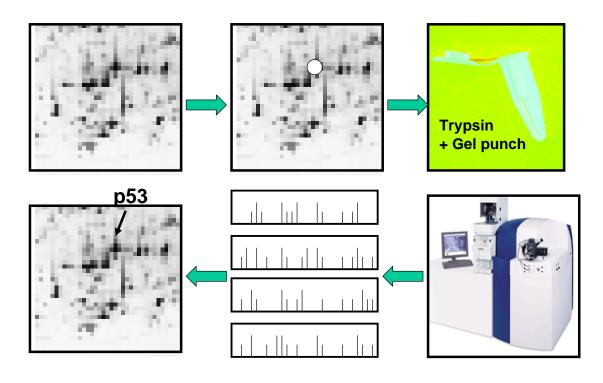
$$Coomassie R-250$$

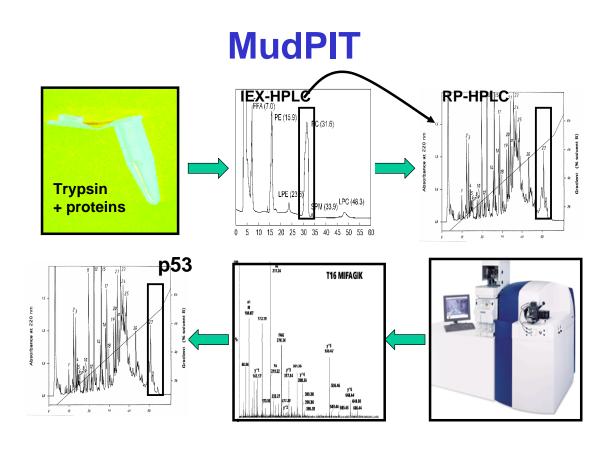
$$COOMASSIE R-250$$

Stain Examples

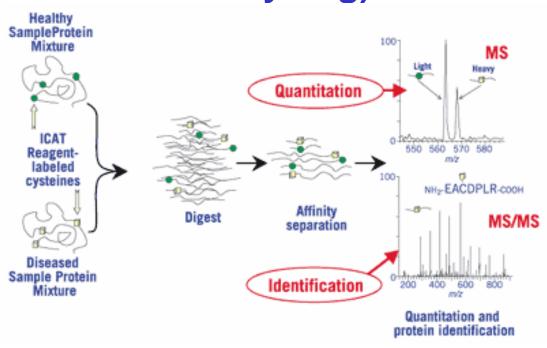

Steps in 2D GE & Peptide ID

- Sample preparation
- Isoelectric focusing (first dimension)
- SDS-PAGE (second dimension)
- Visualization of proteins spots
- Identification of protein spots
- Annotation & spot evaluation

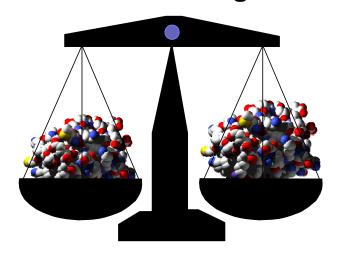

Protein Identification


- 2D-GE + MALDI-MS
 - Peptide Mass Fingerprinting (PMF)
- 2D-GE + MS-MS
 - MS Peptide Sequencing/Fragment Ion Searching
- Multidimensional LC + MS-MS
 - ICAT Methods (isotope labelling)
 - MudPIT (Multidimensional Protein Ident. Tech.)
- 1D-GE + LC + MS-MS
- De Novo Peptide Sequencing

2D-GE + MALDI (PMF)

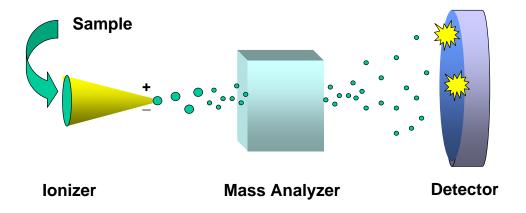


2D-GE + MS-MS



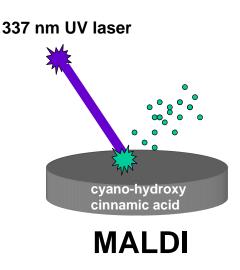
ICAT (Isotope Coded Affinity Tag)

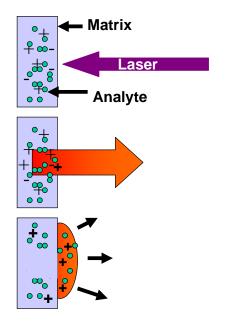
Mass Spectrometry


 Analytical method to measure the molecular or atomic weight of samples

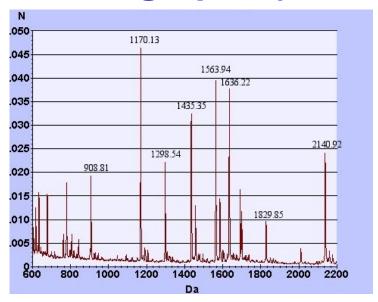
MS Principles

- Find a way to "charge" an atom or molecule (ionization)
- Place charged atom or molecule in a magnetic field or subject it to an electric field and measure its speed or radius of curvature relative to its mass-to-charge ratio (mass analyzer)
- Detect ions using microchannel plate or photomultiplier tube

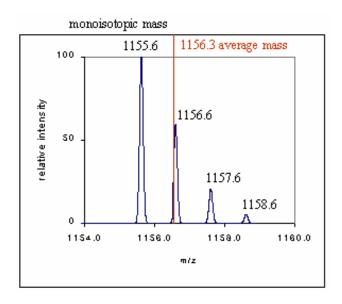

Mass Spec Principles


Typical Mass Spectrometer

Matrix-Assisted Laser Desorption Ionization



MALDI Ionization



- Absorption of UV radiation by chromophoric matrix and ionization of matrix
- Dissociation of matrix, phase change to supercompressed gas, charge transfer to analyte molecule
- Expansion of matrix at supersonic velocity, analyte trapped in expanding matrix plume (explosion/"popping")

MALDI Spectra (Mass Fingerprint)

Masses in MS

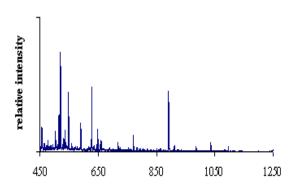
- Monoisotopic mass is the mass determined using the masses of the most abundant isotopes
- Average mass is the abundance weighted mass of all isotopic components

Amino Acid Residue Masses

Monoisotopic Mass

Glycine	57.02147	Aspartic acid	115.02695
Alanine	71.03712	Glutamine	128.05858
Serine	87.03203	Lysine	128.09497
Proline	97.05277	Glutamic acid	129.04264
Valine	99.06842	Methionine	131.04049
Threonine	101.04768	Histidine	137.05891
Cysteine	103.00919	Phenylalanine	147.06842
Isoleucine	113.08407	Arginine	156.10112
Leucine	113.08407	Tyrosine	163.06333
Asparagine	114.04293	Tryptophan	186.07932

Amino Acid Residue Masses


Average Mass

Glycine	57.0520	Aspartic acid	115.0886
Alanine	71.0788	Glutamine	128.1308
Serine	87.0782	Lysine	128.1742
Proline	97.1167	Glutamic acid	129.1155
Valine	99.1326	Methionine	131.1986
Threonine	101.1051	Histidine	137.1412
Cysteine	103.1448	Phenylalanine	147.1766
Isoleucine	113.1595	Arginine	156.1876
Leucine	113.1595	Tyrosine	163.1760
Asparagine	114.1039	Tryptophan	186.2133

Calculating Peptide Masses

- Sum the monoisotopic residue masses
- Add mass of H₂O (18.01056)
- Add mass of H⁺ (1.00785 to get M+H)
- If Met is oxidized add 15.99491
- If Cys has acrylamide adduct add 71.0371
- If Cys is iodoacetylated add 58.0071
- Other modifications are listed at
 - http://prowl.rockefeller.edu/aainfo/deltamassv2.html
- Only consider peptides with masses > 400

Peptide Mass Fingerprinting (PMF)

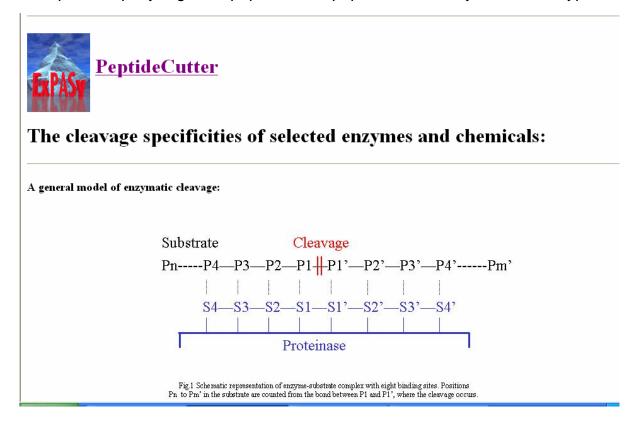
Peptide Mass Fingerprinting

- Used to identify protein spots on gels or protein peaks from an HPLC run
- Depends of the fact that if a peptide is cut up or fragmented in a known way, the resulting fragments (and resulting masses) are unique enough to identify the protein
- Requires a database of known sequences
- Uses software to compare observed masses with masses calculated from database

Principles of Fingerprinting

<u>Sequence</u>	Mass (м+н)	Tryptic Fragments
>Protein 1 acedfhsa <mark>k</mark> dfqea sdfp <mark>k</mark> ivtmeeewe ndadnfe <mark>k</mark> qwfe	4842.05	acedfhsak dfgeasdfpk ivtmeeewendadnfek gwfe
>Protein 2 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfe	4842.05	acek dfhsadfgeasdfpk ivtmeeewenk dadnfeqwfe
>Protein 3 acedfhsadfqeka sdfpkivtmeeewe ndakdnfeqwfe	4842.05	acedfhsadfgek asdfpk ivtmeeewendak dnfegwfe

Principles of Fingerprinting


<u>Sequence</u>	Mass (M+H)	Mass Spectrum
>Protein 1 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe	4842.05	
>Protein 2 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfe	4842.05	
>Protein 3 acedfhsadfqeka sdfpkivtmeeewe ndakdnfeqwfe	4842.05	

Predicting Peptide Cleavages

http://ca.expasy.org/tools/peptidecutter/

http://ca.expasy.org/tools/peptidecutter/peptidecutter_enzymes.html#Tryps

Protease Cleavage Rules

Trypsin XXX[KR]--[!P]XXX

Chymotrypsin XX[FYW]--[!P]XXX

Lys C XXXXXK-- XXXXX

Asp N endo XXXXXD-- XXXXX

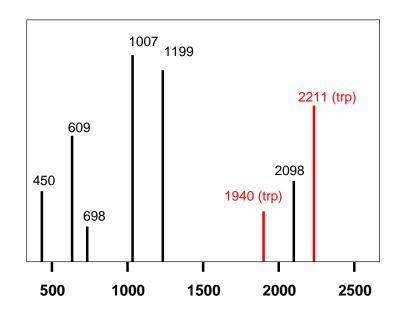
CNBr XXXXXM--XXXXX

Why Trypsin?

- Robust, stable enzyme
- Works over a range of pH values & Temp.
- Quite specific and consistent in cleavage
- Cuts frequently to produce "ideal" MW peptides
- Inexpensive, easily available/purified
- Does produce "autolysis" peaks (which can be used in MS calibrations)
 - 1045.56, 1106.03, 1126.03, 1940.94, 2211.10, 2225.12, 2283.18, 2299.18

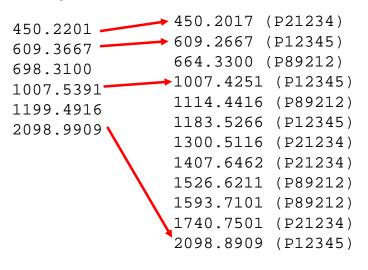
Preparing a Peptide Mass Fingerprint Database

- Take a protein sequence database (Swiss-Prot or nr-GenBank)
- Determine cleavage sites and identify resulting peptides for each protein entry
- Calculate the mass (M+H) for each peptide
- Sort the masses from lowest to highest
- Have a pointer for each calculated mass to each protein accession number in databank


Building A PMF Database

Sequence DB	Calc. Tryptic Frags	Mass List
>P12345 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe	acedfhsak dfgeasdfpk ivtmeeewendadnfek gwfe	450.2017 (P21234) 609.2667 (P12345) 664.3300 (P89212) 1007.4251 (P12345)
>P21234 acekdfhsadfqea sdfpkivtmeeewe nkdadnfeqwfe	acek dfhsadfgeasdfpk ivtmeeewenk dadnfeqwfe	1114.4416 (P89212) 1183.5266 (P12345) 1300.5116 (P21234) 1407.6462 (P21234) 1526.6211 (P89212)
>P89212 acedfhsadfqeka sdfpkivtmeeewe ndakdnfeqwfe	acedfhsadfgek asdfpk ivtmeeewendak dnfegwfe	1593.7101 (P89212) 1740.7501 (P21234) 2098.8909 (P12345)

The Fingerprint (PMF) Algorithm


- Take a mass spectrum of a trypsincleaved protein (from gel or HPLC peak)
- Identify as many masses as possible in spectrum (avoid autolysis peaks)
- Compare query masses with database masses and calculate # of matches or matching score (based on length and mass difference)
- Rank hits and return top scoring entry this is the protein of interest

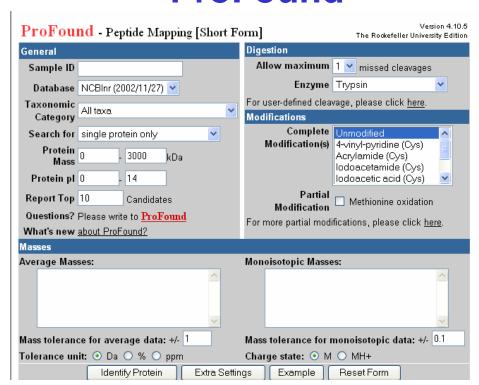
Query (MALDI) Spectrum

Query vs. Database

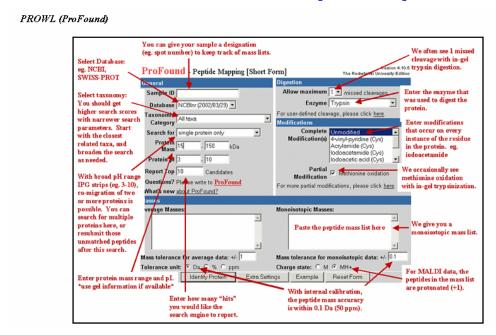
Query Masses Database Mass List Results

. . . 1

- 2 Unknown masses 1 hit on P21234 3 hits on P12345
- Conclude the query protein is P12345


What You Need To Do PMF

- A list of query masses (as many as possible)
- Protease(s) used or cleavage reagents
- Databases to search (SWProt, Organism)
- Estimated mass and pl of protein spot (opt)
- Cysteine (or other) modifications
- Minimum number of hits for significance
- Mass tolerance (100 ppm = 1000.0 ± 0.1 Da)
- A PMF website (Prowl, ProFound, Mascot, etc.)


PMF on the Web

- ProFound
 - http://129.85.19.192/profound_bin/WebProFound.exe
- MOWSE
 - http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse
- PeptideSearch
 - http://www.narrador.emblheidelberg.de/GroupPages/Homepage.html
- Mascot
 - www.matrixscience.com
- PeptIdent
 - http://us.expasy.org/tools/peptident.html

ProFound

ProFound (PMF)

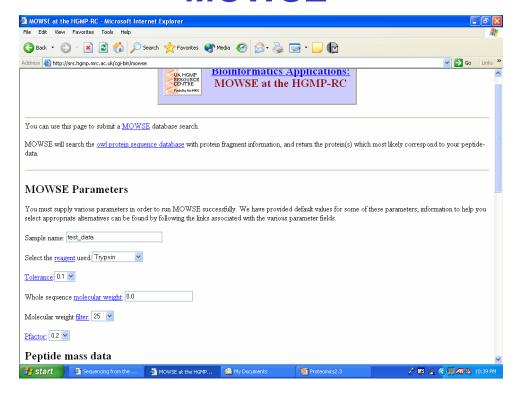
What Are Missed Cleavages?

Sequence

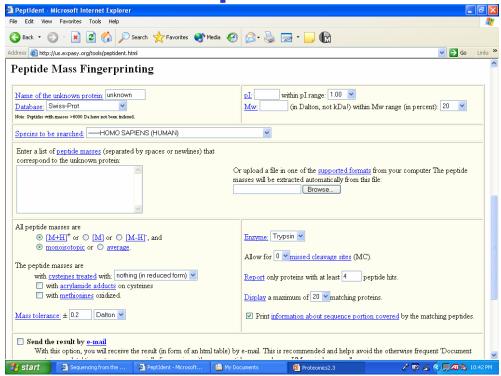
>Protein 1 acedfhsakdfqea sdfpkivtmeeewe ndadnfekqwfe

Tryptic Fragments (no missed cleavage)

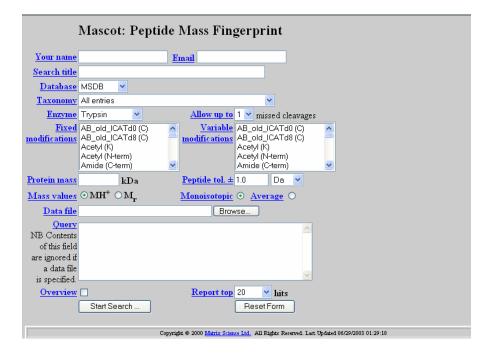
acedfhsak (1007.4251)
dfgeasdfpk (1183.5266)
ivtmeeewendadnfek (2098.8909)
gwfe (609.2667)

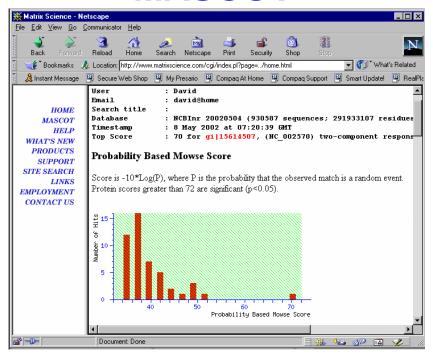

Tryptic Fragments (1 missed cleavage)

acedfhsak (1007.4251)
dfgeasdfpk (1183.5266)
ivtmeeewendadnfek 2098.8909)
gwfe (609.2667)
acedfhsakdfgeasdfpk (2171.9338)
ivtmeeewendadnfekgwfe (2689.1398)
dfgeasdfpkivtmeeewendadnfek (3263.2997)

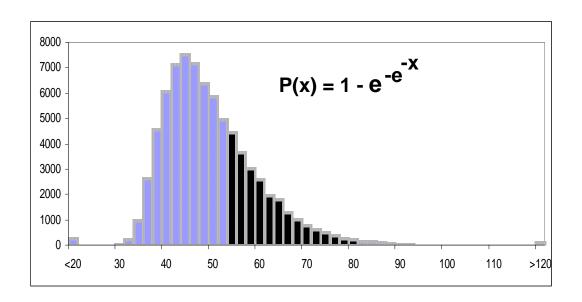

ProFound Results

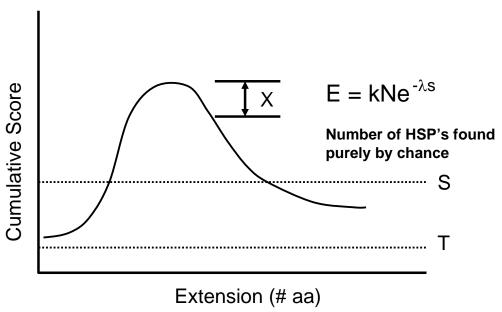
Pro	Found	- Sea	rch Result Summary	The Rod	kefeller		rsion 4.1 rsity Edit	
Prote	Protein Candidates for search в9403AFB-07C0-76BF87E5 [1209637 sequences searched]							
Rank	Probability	Est'd Z	Protein Information and Sequence Analyse Tools (T)	%	pl	kDa	®
1	2.2e-001	0.12	T gil15222204reffNP 172776.1 putative oxysterol-binding pr protein id: At1g13170.1 [Arabidopsis thaliana]	otein;	8	6.1	92.31	®
2	2.2e-001	0.12	T gj 17547403 ref NP 520805.1 PROBABLE OXIDOREDUCT PYRROLINE-5-CARBOXYLATE REDUCTASE SIGNAL PEP PROTEIN [Ralstonia solanacearum]		<u>11</u>	5.8	28.10	®
3	7.6e-002	-	T gi 23054472 gb ZP 00080629.1 hypothetical protein [Geob- metallireducens]	acter	<u>11</u>	6.1	51.76	®
4	7.6e-002	-	T gi 19920902 ref NP 609168.1 CG7228-PA [Drosophila melanogaster]		Z	8.6	66.18	®
5	2.6e-002	-	T gil19572314emb CAD19081.1 potassium channel beta cha [Stigmatella aurantiaca]	in	<u>10</u>	9.6	41.10	®
+6	2.5e-002	-	T gi 2133779 pir S63985 collagen alpha 2 chain precursor - se urchin (Strongylocentrotus purpuratus) (fragment)	a.	<u>3</u>	4.4	200.03	®
7	2.3e-002	-	T gil15450423 gb AAK96505.1 AT4g20760/F21C20_110 [Arabidopsis thaliana]		<u>13</u>	9.8	32.46	®
+8	2.0e-002	-	T gi 7495844 pir T25534 hypothetical protein C10H11.6 - Caenorhabditis elegans		<u>8</u>	6.7	58.38	®
9	1.9e-002	-	$ extbf{T}$ gi[21293583]gb[EAA05728.1] agCP10259 [Anopheles gamb: PEST]	iae str.	4	6.3	66.10	®
10	1.6e-002	-	T gil16121031 ref NP 404344.1 sigma-54 transcriptional regul protein [Yersinia pestis]	latory	<u>10</u>	6.1	37.74	8


MOWSE


PeptIdent

MASCOT


MASCOT


Mascot Scoring

- The statistics of peptide fragment matching in MS (or PMF) is very similar to the statistics used in BLAST
- The scoring probability follows an extreme value distribution
- High scoring segment pairs (in BLAST) are analogous to high scoring mass matches in Mascot
- Mascot scoring is much more robust than arbitrary match cutoffs (like % ID)

Extreme Value Distribution

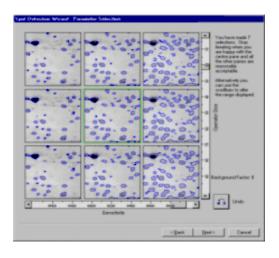
Extending HSP's

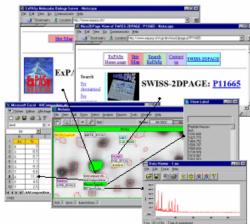
Mascot/Mowse Scoring

- The Mascot Score is given as S = -10*Log(P), where P is the probability that the observed match is a random event
- Try to aim for probabilities where P<0.05 (less than a 5% chance the peptide mass match is random)
- Mascot scores greater than 72 are significant (p<0.05).

Advantages of PMF

- Uses a "robust" & inexpensive form of MS (MALDI)
- Doesn't require too much sample optimization
- Can be done by a moderately skilled operator (don't need to be an MS expert)
- Widely supported by web servers
- Improves as DB's get larger & instrumentation gets better
- Very amenable to high throughput robotics (up to 500 samples a day)


Limitations With PMF


- Requires that the protein of interest already be in a sequence database
- Spurious or missing critical mass peaks always lead to problems
- Mass resolution/accuracy is critical, best to have <20 ppm mass resolution
- Generally found to only be about 40% effective in positively identifying gel spots

Steps in 2D GE & Peptide ID

- Sample preparation
- Isoelectric focusing (first dimension)
- SDS-PAGE (second dimension)
- Visualization of proteins spots
- Identification of protein spots
- Annotation & spot evaluation

2D Gel Software

Commercial Software

- Melanie 3 (GeneBio Windows only)
 - http://ca.expasy.org/melanie
- ImageMaster 2D Elite (Amersham)
 - http://www.imsupport.com/
- Phoretix 2D Advanced
 - http://www.phoretix.com/
- PDQuest 6.1 (BioRad Windows only)
 - http://www.proteomeworks.bio-rad.com/html/pdquest.html

Common Software Features

- Image contrast and coloring
- Gel annotation (spot selection & marking)
- Automated peak picking
- Spot area determination (Integration)
- Matching/Morphing/Landmarking 2 gels
- Stacking/Aligning/Comparing gels
- Annotation copying between 2 gels

GelScape – Gel Annotation on the Web

- Web-enabled gel viewing and annotation tool
- Allows users to post, share and compare gels in a free, platform independent manner
- A Java Applet with extensive Perl and HTML
- Tested and operable on most platforms (UNIX, Linux, Windows, MacOS) using most browsers (IE and Netscape > 4.0)
- Conceptually aligned with web mail
- Developed by Nelson Young & Casper Chang

GelScape Supports...

- 1D and 2D gel image uploading (gif and jpg) from local machine
- Non-local (server-side) storage of annotated gels
- Image resizing (zooming?)
- Spot marking and unmarking
- Spot annotation (via Swiss Prot ID, mass fingerprint, hand annotation)

GelScape Supports...

- MW and pH grid drawing and dragging
- Spot edge detection and spot integration
- Interactive, image map spot annotation display
- Gel comparison (overlaying)
- Gel legend display
- Image saving, image uploading (to GelBank), image printing (preview)

http://www.gelscape.org

Expressional Proteomics

- Sample preparation
- 2D electrophoresis or 2D HPLC separation
- Visualization of proteins spots/peaks
- Identification of protein spots/peaks
- Annotation & spot evaluation

3 Kinds of Proteomics

- Structural Proteomics
 - High throughput X-ray Crystallography/Modelling
 - High throughput NMR Spectroscopy/Modelling
- Expressional or Analytical Proteomics
 - Electrophoresis, Protein Chips, DNA Chips, 2D-HPLC
 - Mass Spectrometry, Microsequencing
- Functional or Interaction Proteomics
 - HT Functional Assays, Protein Chips, Ligand Chips
 - Yeast 2-hybrid, Deletion Analysis, Motif Analysis